Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 278: 120261, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422277

RESUMO

Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups received daily AG administered either continuously (cAG) or intermittently (iAG). A control group received no AG. We assessed resting-state functional connectivity before, during, and after HDBR. We also measured balance and mobility changes from pre- to post-HDBR. We examined how functional connectivity changes throughout HDBR and whether AG is associated with differential effects. We found differential connectivity changes by group between posterior parietal cortex and multiple somatosensory regions. The control group exhibited increased functional connectivity between these regions throughout HDBR whereas the cAG group showed decreased functional connectivity. This finding suggests that AG alters somatosensory reweighting during HDBR. We also observed brain-behavioral correlations that differed significantly by group. Control group participants who showed increased connectivity between the putamen and somatosensory cortex exhibited greater mobility declines post-HDBR. For the cAG group, increased connectivity between these regions was associated with little to no mobility declines post-HDBR. This suggests that when somatosensory stimulation is provided via AG, functional connectivity increases between the putamen and somatosensory cortex are compensatory in nature, resulting in reduced mobility declines. Given these findings, AG may be an effective countermeasure for the reduced somatosensory stimulation that occurs in both microgravity and HDBR.


Assuntos
Gravidade Alterada , Voo Espacial , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Córtex Somatossensorial/diagnóstico por imagem
2.
Sci Rep ; 13(1): 7878, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291238

RESUMO

Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission duration or spaceflight experience history (i.e., novice or experienced, number of prior missions, time between missions). Here we addressed this issue by quantifying regional voxelwise changes in brain gray matter volume, white matter microstructure, extracellular free water (FW) distribution, and ventricular volume from pre- to post-flight in a sample of 30 astronauts. We found that longer missions were associated with greater expansion of the right lateral and third ventricles, with the majority of expansion occurring during the first 6 months in space then appearing to taper off for longer missions. Longer inter-mission intervals were associated with greater expansion of the ventricles following flight; crew with less than 3 years of time to recover between successive flights showed little to no enlargement of the lateral and third ventricles. These findings demonstrate that ventricle expansion continues with spaceflight with increasing mission duration, and inter-mission intervals less than 3 years may not allow sufficient time for the ventricles to fully recover their compensatory capacity. These findings illustrate some potential plateaus in and boundaries of human brain changes with spaceflight.


Assuntos
Voo Espacial , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Astronautas , Ventrículos Cerebrais/diagnóstico por imagem
3.
Cereb Cortex ; 33(12): 8011-8023, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36958815

RESUMO

Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate the effects of microgravity on human physiology and performance. We examined the effectiveness of daily AG for mitigating brain and/or behavioral changes in 60 days of HDBR. One group received AG for 30 minutes daily (AG; n = 16) and a control group spent the same time in HDBR but received no AG (CTRL; n = 8). All participants performed a sensorimotor adaptation task five times during fMRI scanning: twice prior to HDBR, twice during HDBR, and once following HDBR. The AG group showed similar behavioral adaptation effects compared with the CTRLs. We identified decreased brain activation in the AG group from pre to late HDBR in the cerebellum for the task baseline portion and in the thalamus, calcarine, cuneus, premotor cortices, and superior frontal gyrus in the AG group during the early adaptation phase. The two groups also exhibited differential brain-behavior correlations. Together, these results suggest that AG may result in a reduced recruitment of brain activity for basic motor processes and sensorimotor adaptation. These effects may stem from the somatosensory and vestibular stimulation that occur with AG.


Assuntos
Encéfalo , Gravidade Alterada , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cerebelo/diagnóstico por imagem , Adaptação Fisiológica
4.
Cereb Cortex ; 33(6): 2641-2654, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35704860

RESUMO

We studied the longitudinal effects of approximately 6 months of spaceflight on brain activity and task-based connectivity during a spatial working memory (SWM) task. We further investigated whether any brain changes correlated with changes in SWM performance from pre- to post-flight. Brain activity was measured using functional magnetic resonance imaging while astronauts (n = 15) performed a SWM task. Data were collected twice pre-flight and 4 times post-flight. No significant effects on SWM performance or brain activity were found due to spaceflight; however, significant pre- to post-flight changes in brain connectivity were evident. Superior occipital gyrus showed pre- to post-flight reductions in task-based connectivity with the rest of the brain. There was also decreased connectivity between the left middle occipital gyrus and the left parahippocampal gyrus, left cerebellum, and left lateral occipital cortex during SWM performance. These results may reflect increased visual network modularity with spaceflight. Further, increased visual and visuomotor connectivity were correlated with improved SWM performance from pre- to post-flight, while decreased visual and visual-frontal cortical connectivity were associated with poorer performance post-flight. These results suggest that while SWM performance remains consistent from pre- to post-flight, underlying changes in connectivity among supporting networks suggest both disruptive and compensatory alterations due to spaceflight.


Assuntos
Memória de Curto Prazo , Voo Espacial , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética/métodos
5.
Sci Rep ; 12(1): 7238, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513698

RESUMO

Humans are exposed to extreme environmental stressors during spaceflight and return with alterations in brain structure and shifts in intracranial fluids. To date, no studies have evaluated the effects of spaceflight on perivascular spaces (PVSs) within the brain, which are believed to facilitate fluid drainage and brain homeostasis. Here, we examined how the number and morphology of magnetic resonance imaging (MRI)-visible PVSs are affected by spaceflight, including prior spaceflight experience. Fifteen astronauts underwent six T1-weighted 3 T MRI scans, twice prior to launch and four times following their return to Earth after ~ 6-month missions to the International Space Station. White matter MRI-visible PVS number and morphology were calculated using an established, automated segmentation algorithm. We validated our automated segmentation algorithm by comparing algorithm PVS counts with those identified by two trained raters in 50 randomly selected slices from this cohort; the automated algorithm performed similarly to visual ratings (r(48) = 0.77, p < 0.001). In addition, we found high reliability for four of five PVS metrics across the two pre-flight time points and across the four control time points (ICC(3,k) > 0.50). Among the astronaut cohort, we found that novice astronauts showed an increase in total PVS volume from pre- to post-flight, whereas experienced crewmembers did not (p = 0.020), suggesting that experienced astronauts may exhibit holdover effects from prior spaceflight(s). Greater pre-flight PVS load was associated with more prior flight experience (r = 0.60-0.71), though these relationships did not reach statistical significance (p > 0.05). Pre- to post-flight changes in ventricular volume were not significantly associated with changes in PVS characteristics, and the presence of spaceflight associated neuro-ocular syndrome (SANS) was not associated with PVS number or morphology. Together, these findings demonstrate that PVSs can be consistently identified on T1-weighted MRI scans, and that spaceflight is associated with PVS changes. Specifically, prior spaceflight experience may be an important factor in determining PVS characteristics.


Assuntos
Sistema Glinfático , Voo Espacial , Astronautas , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
6.
Front Aging Neurosci ; 14: 809281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360214

RESUMO

Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when they perform a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underlie dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: (1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and (2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.

7.
Front Neural Circuits ; 16: 784280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310547

RESUMO

The altered vestibular signaling and somatosensory unloading of microgravity result in sensory reweighting and adaptation to conflicting sensory inputs. Aftereffects of these adaptive changes are evident postflight as impairments in behaviors such as balance and gait. Microgravity also induces fluid shifts toward the head and an upward shift of the brain within the skull; these changes are well-replicated in strict head-down tilt bed rest (HDBR), a spaceflight analog environment. Artificial gravity (AG) is a potential countermeasure to mitigate these effects of microgravity. A previous study demonstrated that intermittent (six, 5-mins bouts per day) daily AG sessions were more efficacious at counteracting orthostatic intolerance in a 5 day HDBR study than continuous daily AG. Here we examined whether intermittent daily AG was also more effective than continuous dosing for mitigating brain and behavioral changes in response to 60 days of HDBR. Participants (n = 24) were split evenly between three groups. The first received 30 mins of continuous AG daily (cAG). The second received 30 mins of intermittent AG daily (6 bouts of 5 mins; iAG). The third received no AG (Ctrl). We collected a broad range of sensorimotor, cognitive, and brain structural and functional assessments before, during, and after the 60 days of HDBR. We observed no significant differences between the three groups in terms of HDBR-associated changes in cognition, balance, and functional mobility. Interestingly, the intermittent AG group reported less severe motion sickness symptoms than the continuous group during centrifugation; iAG motion sickness levels were not elevated above those of controls who did not undergo AG. They also had a shorter duration of post-AG illusory motion than cAG. Moreover, the two AG groups performed the paced auditory serial addition test weekly while undergoing AG; their performance was more accurate than that of controls, who performed the test while in HDBR. Although AG did not counteract HDBR-induced gait and balance declines, iAG did not cause motion sickness and was associated with better self-motion perception during AG ramp-down. Additionally, both AG groups had superior cognitive performance while undergoing AG relative to controls; this may reflect attention or motivation differences between the groups.


Assuntos
Gravidade Alterada , Voo Espacial , Repouso em Cama , Cognição , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos
8.
Front Neurol ; 12: 774805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956056

RESUMO

Spaceflight induces lasting enlargement of the brain's ventricles as well as intracranial fluid shifts. These intracranial fluid shifts have been attributed to prolonged microgravity exposure, however, the potential effects of hypergravity exposure during launch and landing have yet to be elucidated. Here we describe a case report of a Crewmember who experienced an Aborted Launch ("CAL"). CAL's launch and landing experience was dissociated from prolonged microgravity exposure. Using MRI, we show that hypergravity exposure during the aborted launch did not induce lasting ventricular enlargement or intracranial fluid shifts resembling those previously reported with spaceflight. This case study therefore rules out hypergravity during launch and landing as a contributing factor to previously reported long-lasting intracranial fluid changes following spaceflight.

9.
Front Neural Circuits ; 15: 723504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764856

RESUMO

Astronauts returning from spaceflight typically show transient declines in mobility and balance. Other sensorimotor behaviors and cognitive function have not been investigated as much. Here, we tested whether spaceflight affects performance on various sensorimotor and cognitive tasks during and after missions to the International Space Station (ISS). We obtained mobility (Functional Mobility Test), balance (Sensory Organization Test-5), bimanual coordination (bimanual Purdue Pegboard), cognitive-motor dual-tasking and various other cognitive measures (Digit Symbol Substitution Test, Cube Rotation, Card Rotation, Rod and Frame Test) before, during and after 15 astronauts completed 6 month missions aboard the ISS. We used linear mixed effect models to analyze performance changes due to entering the microgravity environment, behavioral adaptations aboard the ISS and subsequent recovery from microgravity. We observed declines in mobility and balance from pre- to post-flight, suggesting disruption and/or down weighting of vestibular inputs; these behaviors recovered to baseline levels within 30 days post-flight. We also identified bimanual coordination declines from pre- to post-flight and recovery to baseline levels within 30 days post-flight. There were no changes in dual-task performance during or following spaceflight. Cube rotation response time significantly improved from pre- to post-flight, suggestive of practice effects. There was also a trend for better in-flight cube rotation performance on the ISS when crewmembers had their feet in foot loops on the "floor" throughout the task. This suggests that tactile inputs to the foot sole aided orientation. Overall, these results suggest that sensory reweighting due to the microgravity environment of spaceflight affected sensorimotor performance, while cognitive performance was maintained. A shift from exocentric (gravity) spatial references on Earth toward an egocentric spatial reference may also occur aboard the ISS. Upon return to Earth, microgravity adaptions become maladaptive for certain postural tasks, resulting in transient sensorimotor performance declines that recover within 30 days.


Assuntos
Voo Espacial , Ausência de Peso , Astronautas , Cognição , Humanos , Fatores de Tempo
10.
Hum Brain Mapp ; 42(13): 4281-4297, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105833

RESUMO

Following long-duration spaceflight, some astronauts exhibit ophthalmic structural changes referred to as Spaceflight Associated Neuro-ocular Syndrome (SANS). Optic disc edema is a common sign of SANS. The origin and effects of SANS are not understood as signs of SANS have not manifested in previous spaceflight analog studies. In the current spaceflight analog study, 11 subjects underwent 30 days of strict head down-tilt bed rest in elevated ambient carbon dioxide (HDBR+CO2 ). Using functional magnetic resonance imaging (fMRI), we acquired resting-state fMRI data at 6 time points: before (2), during (2), and after (2) the HDBR+CO2 intervention. Five participants developed optic disc edema during the intervention (SANS subgroup) and 6 did not (NoSANS group). This occurrence allowed us to explore whether development of signs of SANS during the spaceflight analog impacted resting-state functional connectivity during HDBR+CO2 . In light of previous work identifying genetic and biochemical predictors of SANS, we further assessed whether the SANS and NoSANS subgroups exhibited differential patterns of resting-state functional connectivity prior to the HDBR+CO2 intervention. We found that the SANS and NoSANS subgroups exhibited distinct patterns of resting-state functional connectivity changes during HDBR+CO2 within visual and vestibular-related brain networks. The SANS and NoSANS subgroups also exhibited different resting-state functional connectivity prior to HDBR+CO2 within a visual cortical network and within a large-scale network of brain areas involved in multisensory integration. We further present associations between functional connectivity within the identified networks and previously identified genetic and biochemical predictors of SANS. Subgroup differences in resting-state functional connectivity changes may reflect differential patterns of visual and vestibular reweighting as optic disc edema develops during the spaceflight analog. This finding suggests that SANS impacts not only neuro-ocular structures, but also functional brain organization. Future prospective investigations incorporating sensory assessments are required to determine the functional significance of the observed connectivity differences.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Rede Nervosa/fisiologia , Papiledema/etiologia , Papiledema/fisiopatologia , Voo Espacial , Adulto , Repouso em Cama , Dióxido de Carbono , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
11.
J Neurophysiol ; 126(1): 47-67, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038228

RESUMO

Dopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on the reinforcement of rewarding actions. In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual error-based feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes. In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field or interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa. These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms that have been shown to be disrupted by levodopa during various cognitive tasks.NEW & NOTEWORTHY Motor adaptation relies on multiple processes including reinforcement of successful actions. Cognitive reinforcement learning is impaired by levodopa-induced disruption of dopamine function. We administered levodopa to healthy adults who participated in multiple motor adaptation tasks. We found no effects of levodopa on any component of motor adaptation. This suggests that motor adaptation may not depend on the same dopaminergic mechanisms as cognitive forms or reinforcement learning that have been shown to be impaired by levodopa.


Assuntos
Adaptação Fisiológica/fisiologia , Aprendizagem/fisiologia , Levodopa/farmacologia , Resultados Negativos , Desempenho Psicomotor/fisiologia , Recompensa , Adaptação Fisiológica/efeitos dos fármacos , Adolescente , Estudos Cross-Over , Dopaminérgicos/farmacologia , Método Duplo-Cego , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/efeitos dos fármacos , Adulto Jovem
12.
Neuroradiology ; 63(8): 1271-1281, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33587162

RESUMO

PURPOSE: Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-investigator study in which 11 healthy participants underwent head-down tilt bed rest, mimicking microgravity-induced cephalad fluid shifts, combined with elevated ambient CO2 levels similar to those on the ISS (HDT+CO2). As part of that study, we examined the effects of HDT+CO2 on cerebral perfusion. METHODS: Using arterial spin labeling, we compared cerebral perfusion before, during, and after HDT+CO2 in participants who developed SANS (n = 5) with those who did not (n = 6). RESULTS: All participants demonstrated a decrease in perfusion during HDT+CO2 (mean decrease of 25.1% at HDT7 and 16.2% at HDT29); however, the timing and degree of change varied between the groups. At day 7 of HDT+CO2, the SANS group experienced a greater reduction in perfusion than the non-SANS group (p =.05, 95% CI:-0.19 to 16.11, d=.94, large effect). Conversely, by day 29 of HDT+CO2, the SANS group had significantly higher perfusion (approaching their baseline) than the non-SANS group (p = .04, 95% CI:0.33 to 13.07, d=1.01, large effect). CONCLUSION: Compared with baseline and recovery, HDT+CO2 resulted in reduced cerebral perfusion which varied based on SANS status. Further studies are needed to unravel the relative role of HDT vs hypercapnia, to determine if these perfusion changes are clinically relevant, and whether perfusion changes contribute to the development of SANS during spaceflight.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Voo Espacial , Repouso em Cama , Circulação Cerebrovascular , Humanos , Hipercapnia , Perfusão
13.
Neuroscience ; 452: 335-344, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220339

RESUMO

Reversed visual feedback during unimanual training increases transfer of skills to the opposite untrained hand and modulates plasticity in motor areas of the brain. However, it is unclear if unimanual training with reversed visual feedback also affects somatosensory areas. Here we manipulated visual input during unimanual training using left-right optical reversing spectacles and tested whether unimanual training with reversed vision modulates somatosensory cortical excitability to facilitate motor performance. Thirty participants practiced a unimanual ball-rotation task using the right hand with either left-right reversed vision (incongruent visual and somatosensory feedback) or direct vision (congruent feedback) of the moving hand. We estimated cortical excitability in primary somatosensory cortex (S1) before and after unimanual training by measuring somatosensory evoked potentials (SEPs). This was done by electrically stimulating the median nerve in the wrist while participants rested, and recording potentials over both hemispheres using electroencephalography. Performance of the ball-rotation task improved for both the right (trained) and left (untrained) hand after training across both direct and reversed vision conditions. Participants with direct vision of the right hand during training showed SEPs amplitudes increased bilaterally. In contrast, participants in the reversed visual condition showed attenuated SEPs following training. The results suggest that cortical suppression of S1 activity supports skilled motor performance after unimanual training with reversed vision, presumably by sensory gating of afferent signals from the movement. This finding provides insight into the mechanisms by which visual input interacts with the sensorimotor system and induces neuroplastic changes in S1 to support skilled motor performance.


Assuntos
Retroalimentação Sensorial , Córtex Motor , Potenciais Somatossensoriais Evocados , Mãos , Humanos , Córtex Somatossensorial
14.
Neuroimage ; 225: 117450, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075558

RESUMO

Astronauts are exposed to microgravity and elevated CO2 levels onboard the International Space Station. Little is known about how microgravity and elevated CO2 combine to affect the brain and sensorimotor performance during and after spaceflight. Here we examined changes in resting-state functional connectivity (FC) and sensorimotor behavior associated with a spaceflight analog environment. Participants underwent 30 days of strict 6o head-down tilt bed rest with elevated ambient CO2 (HDBR+CO2). Resting-state functional magnetic resonance imaging and sensorimotor assessments were collected 13 and 7 days prior to bed rest, on days 7 and 29 of bed rest, and 0, 5, 12, and 13 days following bed rest. We assessed the time course of FC changes from before, during, to after HDBR+CO2. We then compared the observed connectivity changes with those of a HDBR control group that underwent HDBR in standard ambient air. Moreover, we assessed associations between post-HDBR+CO2 FC changes and alterations in sensorimotor performance. HDBR+CO2 was associated with significant changes in functional connectivity between vestibular, visual, somatosensory and motor brain areas. Several of these sensory and motor regions showed post-HDBR+CO2 FC changes that were significantly associated with alterations in sensorimotor performance. We propose that these FC changes reflect multisensory reweighting associated with adaptation to the HDBR+CO2 microgravity analog environment. This knowledge will further improve HDBR as a model of microgravity exposure and contribute to our knowledge of brain and performance changes during and after spaceflight.


Assuntos
Encéfalo/diagnóstico por imagem , Dióxido de Carbono , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Voo Espacial , Simulação de Ausência de Peso , Adulto , Repouso em Cama , Encéfalo/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Hipercapnia , Locomoção , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Propriocepção
15.
Cereb Cortex Commun ; 1(1): tgaa023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864615

RESUMO

As plans develop for Mars missions, it is important to understand how long-duration spaceflight impacts brain health. Here we report how 12-month (n = 2 astronauts) versus 6-month (n = 10 astronauts) missions impact brain structure and fluid shifts. We collected MRI scans once before flight and four times after flight. Astronauts served as their own controls; we evaluated pre- to postflight changes and return toward preflight levels across the 4 postflight points. We also provide data to illustrate typical brain changes over 7 years in a reference dataset. Twelve months in space generally resulted in larger changes across multiple brain areas compared with 6-month missions and aging, particularly for fluid shifts. The majority of changes returned to preflight levels by 6 months after flight. Ventricular volume substantially increased for 1 of the 12-month astronauts (left: +25%, right: +23%) and the 6-month astronauts (left: 17 ± 12%, right: 24 ± 6%) and exhibited little recovery at 6 months. Several changes correlated with past flight experience; those with less time between subsequent missions had larger preflight ventricles and smaller ventricular volume increases with flight. This suggests that spaceflight-induced ventricular changes may endure for long periods after flight. These results provide insight into brain changes that occur with long-duration spaceflight and demonstrate the need for closer study of fluid shifts.

16.
PLoS Comput Biol ; 15(3): e1006839, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30830902

RESUMO

Consideration of previous successes and failures is essential to mastering a motor skill. Much of what we know about how humans and animals learn from such reinforcement feedback comes from experiments that involve sampling from a small number of discrete actions. Yet, it is less understood how we learn through reinforcement feedback when sampling from a continuous set of possible actions. Navigating a continuous set of possible actions likely requires using gradient information to maximize success. Here we addressed how humans adapt the aim of their hand when experiencing reinforcement feedback that was associated with a continuous set of possible actions. Specifically, we manipulated the change in the probability of reward given a change in motor action-the reinforcement gradient-to study its influence on learning. We found that participants learned faster when exposed to a steep gradient compared to a shallow gradient. Further, when initially positioned between a steep and a shallow gradient that rose in opposite directions, participants were more likely to ascend the steep gradient. We introduce a model that captures our results and several features of motor learning. Taken together, our work suggests that the sensorimotor system relies on temporally recent and spatially local gradient information to drive learning.


Assuntos
Aprendizagem , Destreza Motora , Reforço Psicológico , Mãos/fisiologia , Humanos , Probabilidade , Análise e Desempenho de Tarefas
18.
J Neurophysiol ; 120(6): 3017-3025, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230990

RESUMO

Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.


Assuntos
Aprendizagem , Desempenho Psicomotor , Córtex Somatossensorial/fisiologia , Discriminação Psicológica , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Masculino , Propriocepção , Percepção Visual , Adulto Jovem
19.
Exp Brain Res ; 236(10): 2829-2838, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30032353

RESUMO

While many of our motor skills are acquired through physical practice, we can also learn how to make movements by observing others. For example, individuals can learn how to reach in novel dynamical environments ('force fields', FF) by observing the movements of a tutor. Previous neurophysiological and neuroimaging studies in humans suggest a role for the motor system in motor learning by observing. Here, we tested the role of primary motor cortex (M1) in motor learning by observing. We used single-pulse transcranial magnetic stimulation to elicit motor-evoked potentials (MEPs) in hand muscles at rest. MEPs were elicited before and after participants observed either a video showing a tutor adapting her reaches to an FF or a control video showing a tutor performing reaches in an unlearnable FF. During MEP acquisition, participants fixated a crosshair while their hand muscles were relaxed. We predicted that observing motor learning would result in greater increases in offline M1 excitability compared to observing movements that did not involve learning. We found that observing FF learning resulted in subsequent increases in MEP amplitudes recorded from right first dorsal interosseous and right abductor pollicis brevis muscles at rest. There were no changes in MEP amplitudes after control participants observed a tutor performing similar movements but not learning. The observed MEP changes can thus be specifically linked to observing motor learning. These results are consistent with the idea that observing motor learning produces functional changes in M1, corticospinal networks or both.


Assuntos
Potencial Evocado Motor/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Tratos Piramidais/fisiologia , Amplitude de Movimento Articular/fisiologia , Análise de Variância , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético , Estimulação Luminosa , Adulto Jovem
20.
PLoS Comput Biol ; 13(7): e1005623, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28753634

RESUMO

It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.


Assuntos
Retroalimentação Sensorial/fisiologia , Aprendizagem/fisiologia , Reforço Psicológico , Análise e Desempenho de Tarefas , Incerteza , Adolescente , Adulto , Biologia Computacional , Mãos , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...