Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2365: 43-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432238

RESUMO

Proteins are essential molecules with a diverse range of functions; elucidating their biological and biochemical characteristics can be difficult and time consuming using in vitro and/or in vivo methods. Additionally, in vivo protein-ligand binding site elucidation is unable to keep place with current growth in sequencing, leaving the majority of new protein sequences without known functions. Therefore, the development of new methods, which aim to predict the protein-ligand interactions and ligand-binding site residues directly from amino acid sequences, is becoming increasingly important. In silico prediction can utilise either sequence information, structural information or a combination of both. In this chapter, we will discuss the broad range of methods for ligand-binding site prediction from protein structure and we will describe our method, FunFOLD3, for the prediction of protein-ligand interactions and ligand-binding sites based on template-based modelling. Additionally, we will describe the step-by-step instructions using the FunFOLD3 downloadable application along with examples from the Critical Assessment of Techniques for Protein Structure Prediction (CASP) where FunFOLD3 has been used to aid ligand and ligand-binding site prediction. Finally, we will introduce our newer method, FunFOLD3-D, a version of FunFOLD3 which aims to improve template-based protein-ligand binding site prediction through the integration of docking, using AutoDock Vina.


Assuntos
Proteínas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligantes , Ligação Proteica , Proteínas/genética
2.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075942

RESUMO

The refinement of predicted 3D protein models is crucial in bringing them closer towards experimental accuracy for further computational studies. Refinement approaches can be divided into two main stages: The sampling and scoring stages. Sampling strategies, such as the popular Molecular Dynamics (MD)-based protocols, aim to generate improved 3D models. However, generating 3D models that are closer to the native structure than the initial model remains challenging, as structural deviations from the native basin can be encountered due to force-field inaccuracies. Therefore, different restraint strategies have been applied in order to avoid deviations away from the native structure. For example, the accurate prediction of local errors and/or contacts in the initial models can be used to guide restraints. MD-based protocols, using physics-based force fields and smart restraints, have made significant progress towards a more consistent refinement of 3D models. The scoring stage, including energy functions and Model Quality Assessment Programs (MQAPs) are also used to discriminate near-native conformations from non-native conformations. Nevertheless, there are often very small differences among generated 3D models in refinement pipelines, which makes model discrimination and selection problematic. For this reason, the identification of the most native-like conformations remains a major challenge.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química
3.
Int J Mol Sci ; 18(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206185

RESUMO

The elucidation of protein-protein interactions is vital for determining the function and action of quaternary protein structures. Here, we discuss the difficulty and importance of establishing protein quaternary structure and review in vitro and in silico methods for doing so. Determining the interacting partner proteins of predicted protein structures is very time-consuming when using in vitro methods, this can be somewhat alleviated by use of predictive methods. However, developing reliably accurate predictive tools has proved to be difficult. We review the current state of the art in predictive protein interaction software and discuss the problem of scoring and therefore ranking predictions. Current community-based predictive exercises are discussed in relation to the growth of protein interaction prediction as an area within these exercises. We suggest a fusion of experimental and predictive methods that make use of sparse experimental data to determine higher resolution predicted protein interactions as being necessary to drive forward development.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Biologia Computacional , Estrutura Quaternária de Proteína
4.
PLoS One ; 12(4): e0175957, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441463

RESUMO

Advances in omics technologies have led to the discovery of genetic markers, or single nucleotide polymorphisms (SNPs), that are associated with particular diseases or complex traits. Although there have been significant improvements in the approaches used to analyse associations of SNPs with disease, further optimised and rapid techniques are needed to keep up with the rate of SNP discovery, which has exacerbated the 'missing heritability' problem. Here, we have devised a novel, integrated, heuristic-based, hybrid analytical computational pipeline, for rapidly detecting novel or key genetic variants that are associated with diseases or complex traits. Our pipeline is particularly useful in genetic association studies where the genotyped SNP data are highly dimensional, and the complex trait phenotype involved is continuous. In particular, the pipeline is more efficient for investigating small sets of genotyped SNPs defined in high dimensional spaces that may be associated with continuous phenotypes, rather than for the investigation of whole genome variants. The pipeline, which employs a consensus approach based on the random forest, was able to rapidly identify previously unseen key SNPs, that are significantly associated with the platelet response phenotype, which was used as our complex trait case study. Several of these SNPs, such as rs6141803 of COMMD7 and rs41316468 in PKT2B, have independently confirmed associations with cardiovascular diseases (CVDs) according to other unrelated studies, suggesting that our pipeline is robust in identifying key genetic variants. Our new pipeline provides an important step towards addressing the problem of 'missing heritability' through enhanced detection of key genetic variants (SNPs) that are associated with continuous complex traits/disease phenotypes.


Assuntos
Plaquetas/metabolismo , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/genética , Marcadores Genéticos/genética , Predisposição Genética para Doença , Genótipo , Humanos , Análise de Regressão
5.
Methods Mol Biol ; 1414: 1-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27094282

RESUMO

Protein-ligand binding site prediction methods aim to predict, from amino acid sequence, protein-ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein-ligand interactions has become extremely important to help determine a protein's functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein-ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein-ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.


Assuntos
Proteínas/química , Sítios de Ligação , Simulação por Computador , Internet , Ligantes , Conformação Proteica , Dobramento de Proteína , Interface Usuário-Computador
6.
Methods Mol Biol ; 1369: 363-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519323

RESUMO

Protein tertiary structure prediction algorithms aim to predict, from amino acid sequence, the tertiary structure of a protein. In silico protein structure prediction methods have become extremely important, as in vitro-based structural elucidation is unable to keep pace with the current growth of sequence databases due to high-throughput next-generation sequencing, which has exacerbated the gaps in our knowledge between sequences and structures.Here we briefly discuss protein tertiary structure prediction, the biennial competition for the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and its role in shaping the field. We also discuss, in detail, our cutting-edge web-server method IntFOLD2-TS for tertiary structure prediction. Furthermore, we provide a step-by-step guide on using the IntFOLD2-TS web server, along with some real world examples, where the IntFOLD server can and has been used to improve protein tertiary structure prediction and aid in functional elucidation.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Proteínas/química , Software , Bases de Dados de Proteínas , Modelos Moleculares , Navegador
7.
Int J Mol Sci ; 16(12): 29829-42, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694353

RESUMO

Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Sítios de Ligação , Simulação por Computador , Ontologia Genética , Ligação Proteica
8.
Methods Mol Biol ; 1137: 83-103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24573476

RESUMO

Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Navegador , Biologia Computacional/métodos , Bases de Dados de Proteínas
9.
Methods Mol Biol ; 413: 61-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18075162

RESUMO

Most newly sequenced proteins are likely to adopt a similar structure to one which has already been experimentally determined. For this reason, the most successful approaches to protein structure prediction have been template-based methods. Such prediction methods attempt to identify and model the folds of unknown structures by aligning the target sequences to a set of representative template structures within a fold library. In this chapter, I discuss the development of template-based approaches to fold prediction, from the traditional techniques to the recent state-of-the-art methods. I also discuss the recent development of structural annotation databases, which contain models built by aligning the sequences from entire proteomes against known structures. Finally, I run through a practical step-by-step guide for aligning target sequences to known structures and contemplate the future direction of template-based structure prediction.


Assuntos
Conformação Proteica , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína , Animais , Simulação por Computador , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...