Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190507, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892728

RESUMO

In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO2 fluxes over Europe based on an ensemble of 11 dynamic global vegetation models (DGVMs), and the observation-based FLUXCOM product. We find that all DH events were associated with decreases in net ecosystem productivity (NEP), but the gross summer flux anomalies differ between DGVMs and FLUXCOM. At the annual scale, FLUXCOM and DGVMs indicate close to neutral or above-average land CO2 uptake in DH2003 and DH2018, due to increased productivity in spring and reduced respiration in autumn and winter compensating for less photosynthetic uptake in summer. Most DGVMs estimate lower gross primary production (GPP) sensitivity to soil moisture during extreme summers than FLUXCOM. Finally, we show that the different impacts of the DH events at continental-scale GPP are in part related to differences in vegetation composition of the regions affected and to regional compensating or offsetting effects from climate anomalies beyond the DH centres. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Secas , Ecossistema , Clima Extremo , Temperatura Alta , Ciclo do Carbono , Europa (Continente) , Calor Extremo , Modelos Teóricos , Estações do Ano
2.
Sci Adv ; 6(24): eaba2724, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577519

RESUMO

In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...