Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405986

RESUMO

Physical pain and negative emotions represent two distinct drinking motives that contribute to harmful alcohol use. Proactive avoidance which can reduce problem drinking in response to these motives appears to be impaired in problem drinkers. However, proactive avoidance and its underlying neural deficits have not been assessed experimentally. How these deficits inter-relate with drinking motives to influence alcohol use also remains unclear. The current study leveraged neuroimaging data collected in forty-one problem and forty-one social drinkers who performed a probabilistic learning go/nogo task that involved proactive avoidance of painful outcomes. We characterized the regional brain responses to proactive avoidance and identified the neural correlates of drinking to avoid physical pain and negative emotions. Behavioral results confirmed problem drinkers' proactive avoidance deficits in learning rate and performance accuracy, both which were associated with greater alcohol use. Imaging findings in problem drinkers showed that negative emotions as a drinking motive predicted attenuated right insula activation during proactive avoidance. In contrast, physical pain motive predicted reduced right putamen response. These regions' activations as well as functional connectivity with the somatomotor cortex also demonstrated a negative relationship with drinking severity and positive relationship with proactive avoidance performance. Path modeling further delineated the pathways through which physical pain and negative emotions, along with alcohol use severity, influenced the neural and behavioral measures of proactive avoidance. Taken together, the current findings provide experimental evidence for proactive avoidance deficits in problem drinkers and establish the link between their neural underpinnings and alcohol misuse.

2.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38365840

RESUMO

Organisms learn to gain reward and avoid punishment through action-outcome associations. Reinforcement learning (RL) offers a critical framework to understand individual differences in this associative learning by assessing learning rate, action bias, pavlovian factor (i.e., the extent to which action values are influenced by stimulus values), and subjective impact of outcomes (i.e., motivation to seek reward and avoid punishment). Nevertheless, how these individual-level metrics are represented in the brain remains unclear. The current study leveraged fMRI in healthy humans and a probabilistic learning go/no-go task to characterize the neural correlates involved in learning to seek reward and avoid pain. Behaviorally, participants showed a higher learning rate during pain avoidance relative to reward seeking. Additionally, the subjective impact of outcomes was greater for reward trials and associated with lower response randomness. Our imaging findings showed that individual differences in learning rate and performance accuracy during avoidance learning were positively associated with activities of the dorsal anterior cingulate cortex, midcingulate cortex, and postcentral gyrus. In contrast, the pavlovian factor was represented in the precentral gyrus and superior frontal gyrus (SFG) during pain avoidance and reward seeking, respectively. Individual variation of the subjective impact of outcomes was positively predicted by activation of the left posterior cingulate cortex. Finally, action bias was represented by the supplementary motor area (SMA) and pre-SMA whereas the SFG played a role in restraining this action tendency. Together, these findings highlight for the first time the neural substrates of individual differences in the computational processes during RL.


Assuntos
Individualidade , Aprendizagem , Humanos , Reforço Psicológico , Recompensa , Dor/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aprendizagem da Esquiva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...