Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15431, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723242

RESUMO

Little is known about the effects of woody plant encroachment-a recent but pervasive phenomenon-on the hydraulic properties of bedrock substrates. Recent work using stream solute concentrations paired with weathering models suggests that woody plant encroachment accelerates limestone weathering. In this field study, we evaluate this hypothesis by examining bedrock in the Edwards Plateau, an extensive karst landscape in Central Texas. We compared a site that has been heavily encroached by woody plants (mainly Quercus fusiformis and Juniperus ashei), with an adjacent site that has been maintained free of encroachment for the past eight decades. Both sites share the same bedrock, as confirmed by trenching, and originally had very few trees, which enabled us to evaluate how encroachment impacted the evolution of hydraulic properties over a period of no more than 80 years. Using in situ permeability tests in boreholes drilled into the weathered bedrock, we found that the mean saturated hydraulic conductivity of the bedrock was higher-by an order of magnitude-beneath woody plants than in the areas where woody plants have been continuously suppressed. Additionally, woody plant encroachment was associated with greater regolith thickness, greater plant rooting depths, significantly lower rock hardness, and a 24-44% increase in limestone matrix porosity. These findings are strong indicators that woody plant encroachment enhances bedrock weathering, thereby amplifying its permeability-a cycle of mutual reinforcement with the potential for substantial changes within a few decades. Given the importance of shallow bedrock for ecohydrological and biogeochemical processes, the broader impacts of woody plant encroachment on weathering rates and permeability warrant further investigation.


Assuntos
Carbonato de Cálcio , Carbonatos , Permeabilidade , Madeira , Árvores
2.
Int J Biometeorol ; 66(3): 591-600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988681

RESUMO

Pigments are known to modify the spectral properties of foliage, which in turn affect the amount of radiant energy stored by the plant canopy. Studies have shown that red pigments (anthocyanin) increase leaf absorptivity of solar radiation, but little is known about their effect on canopy net radiation and temperature. We hypothesized that increased absorptivity of solar radiation caused by red pigments would result in higher canopy temperature when compared to that of a green canopy. To better understand the role of red pigments on canopy net radiation and temperature, we conducted a study where we measured leaf spectral properties, canopy spectral reflectivity, stomatal conductance, net radiation, and leaf and canopy temperature of red and green cotton (Gossypium hirsutum L.) canopies. On average, albedo of the red canopy was 0.02 lower than that of the green canopy, and most of the differences in reflected solar irradiance were in near-infrared wavelengths. Red canopy had greater net radiation than the green canopy throughout the measurement period, and that was due to its lower albedo. Red canopy was about 1 °C warmer than the green canopy on average; however, computer simulation indicates that albedo was of secondary importance in controlling canopy temperature. Contrary to our hypothesis, results suggest that lower stomatal conductance in the red leaves was the main driver of canopy temperature differences between red and green canopies.


Assuntos
Gossypium , Folhas de Planta , Simulação por Computador , Folhas de Planta/efeitos da radiação , Luz Solar , Temperatura
3.
Sci Total Environ ; 783: 146977, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866174

RESUMO

Lawns have long been a primary feature of residential landscapes in the United States. However, as population growth in urban areas continues to rise, water conservation is becoming a key priority for many municipalities. In recent years, some municipalities have begun to offer rebate programs which incentivize removal of turfgrass areas and conversion to alternative 'water-efficient' landscapes, with the goal of reducing outdoor water use. The environmental impacts and changes to ecosystem services associated with such landscape alterations are not well understood. Therefore, a 2-year continuous research project was conducted at the Urban Landscape Runoff Research Facility at Texas A&M University to evaluate rainfall capture and runoff volumes associated with several commonly used residential landscape types (including, St. Augustine grass Lawn, Xeriscaping, Mulch, Artificial Turf, and Sand-capped Lawn) and to characterize the flow dynamics of surface runoff in relation to rainfall intensity for each landscape. The results demonstrate that runoff dynamics differ between landscapes, but also change over time as the newly converted landscapes become established. Following the initial months of establishment, the effects of landscape type on runoff volumes were significant, with Artificial Turf and Xeriscaping generating greater runoff volumes than Mulch and St. Augustine grass Lawns for most runoff events, which is partially due to the low infiltration rate of such landscapes. Overall, Artificial Turf and Xeriscaping showed the greatest cumulative runoff volumes (>400 L m-2), whereas Water Efficient- Mulch, Sand-capped Lawn and St. Augustine grass Lawn had a significantly lower cumulative runoff volumes, ranging from 180 to 290 L m-2. Information from this research should be useful to municipalities, water purveyors, and homeowner associations as they weigh the long-term hydrological impacts of lawn removal and landscape conversion programs.

4.
J Vis Exp ; (90): e51540, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25146420

RESUMO

As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m(2) facility was constructed which consists of 24 individual 33.6 m(2) field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4₋P, K(+), Mg(2+), and Ca(2+) had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.


Assuntos
Monitoramento Ambiental/métodos , Arquitetura de Instituições de Saúde/métodos , Esgotos/análise , Cidades , Ecossistema
5.
Chemosphere ; 64(5): 704-10, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16403547

RESUMO

Sequestration of aqueous atrazine by organoclays prepared from the surfactant 6-piperazin-1-yl-N,N'-bis-(1,1,3,3-tetramethyl-butyl)-(1,3,5)triazine-2,4-diamine and Gonzales bentonite was assessed using 14C-labeled atrazine. Organoclays with varying ratios of surfactant to clay were evaluated with respect to their ability to sequester atrazine from an aqueous solution. Organoclays containing 100-200 g kg-1 surfactant on a total weight basis provided the most efficient adsorption of atrazine, with apparent KOC values exceeding 5000 l kg-1 at these loading fractions. Less than 12% of sequestered atrazine was released during four sequential day long washings, supporting our expectation that the majority of the reaction of atrazine with the surfactant lead to irreversible chemical bond formation through nucleophilic aromatic substitution.


Assuntos
Silicatos de Alumínio/química , Atrazina/química , Bentonita/química , Tensoativos/química , Triazinas/química , Adsorção , Biodegradação Ambiental , Argila , Hidrocarbonetos Aromáticos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...