Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 239(8): 2605-2620, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34213632

RESUMO

Increased use of epidural Spinal Cord Stimulation (eSCS) for the rehabilitation of spinal cord injury (SCI) has highlighted the need for a greater understanding of the properties of reflex circuits in the isolated spinal cord, particularly in response to repetitive stimulation. Here, we investigate the frequency-dependence of modulation of short- and long-latency EMG responses of lower limb muscles in patients with SCI at rest. Single stimuli could evoke short-latency responses as well as long-latency (likely polysynaptic) responses. The short-latency component was enhanced at low frequencies and declined at higher rates. In all muscles, the effects of eSCS were more complex if polysynaptic activity was elicited, making the motor output become an active process expressed either as suppression, tonic or rhythmical activity. The polysynaptic activity threshold is not constant and might vary with different stimulation frequencies, which speaks for its temporal dependency. Polysynaptic components can be observed as direct responses, neuromodulation of monosynaptic responses or driving the muscle activity by themselves, depending on the frequency level. We suggest that the presence of polysynaptic activity could be a potential predictor for appropriate stimulation conditions. This work studies the complex behaviour of spinal circuits deprived of voluntary motor control from the brain and in the absence of any other inputs. This is done by describing the monosynaptic responses, polysynaptic activity, and its interaction through its input-output interaction with sustain stimulation that, unlike single stimuli used to study the reflex pathway, can strongly influence the interneuron circuitry and reveal a broader spectrum of connectivity.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Estimulação Elétrica , Humanos , Reflexo , Medula Espinal
2.
J Neurosurg Spine ; 17(1 Suppl): 77-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22985373

RESUMO

OBJECT: This study was designed to develop an objective and sensitive spinal cord injury (SCI) characterization protocol based on surface electromyography (EMG) activity. METHODS: Twenty-four patients at both acute and chronic time points post-SCI, as well as 4 noninjured volunteers, were assessed using neurophysiological and clinical measures of volitional motor function. The EMG amplitude was recorded from 15 representative muscles bilaterally during standardized maneuvers as a neurophysiological assessment of voluntary motor function. International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) examinations were performed as a clinical assessment of lesion severity. RESULTS: Sixty-six functional neurophysiological assessments were performed in 24 patients with SCI and in 4 neurologically intact individuals. The collected EMG data were organized by quantitative parameters and statistically analyzed. The correlation between root mean square (RMS) of the EMG signals and ISNCSCI motor score was confirmed by Kendall correlation analysis. The Kendall correlation value between overall muscles/levels, motor scores, and the RMS of the EMG data is 0.85, with the 95% CI falling into the range of 0.76-0.95. Significant correlations were also observed for the soleus (0.51 [0.28-0.74]), tibialis anterior (TA) (0.53 [0.33-0.73]), tricep (0.52, [0.34-0.70]), and extensor carpi radialis (ECR) (0.80 [0.42-1.00]) muscles. Comparisons of RMS EMG values in groups defined by ISNCSCI motor score further confirmed these results. At the bicep and ECR, patients with motor scores of 5 had nearly significantly higher RMS EMG values than patients with motor scores of 0 (p = 0.059 and 0.052, respectively). At the soleus and TA, the RMS of the EMG value was significantly higher (p < 0.01) for patients with American Spinal Injury Association Impairment Scale motor scores of 5 than for those with ISNCSCI motor scores of 0. Those with C-7 ISNCSCI motor scores of 5 had significantly higher RMS EMG values at the tricep than those with motor scores of 4 (p = 0.008) and 0 (p = 0.02). Results also show that surface EMG signals recorded from trunk muscles allowed the examiner to pick up subclinical changes, even though no ISNCSCI scores were given. CONCLUSIONS: Surface EMG signal is suitable for objective neurological SCI characterization protocol design. The quantifiable features of surface EMG may increase SCI characterization resolution by adding subclinical details to the clinical picture of lesion severity and distribution.


Assuntos
Eletromiografia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...