Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38763411

RESUMO

OBJECTIVE: Neighborhoods provide essential resources (eg, education, safe housing, green space) that influence neurodevelopment and mental health. However, we need a clearer understanding of the mechanisms mediating these relationships. Limited access to neighborhood resources may hinder youths from achieving their goals and, over time, shape their behavioral and neurobiological response to negatively biased environments blocking goals and rewards. METHOD: To test this hypothesis, 211 youths (aged ∼13.0 years, 48% boys, 62% identifying as White, 75% with a psychiatric disorder diagnosis) performed a task during functional magnetic resonance imaging. Initially, rewards depended on performance (unbiased condition); but later, rewards were randomly withheld under the pretense that youths did not perform adequately (negatively biased condition), a manipulation that elicits frustration, sadness, and a broad response in neural networks. We investigated associations between the Childhood Opportunity Index (COI), which quantifies access to youth-relevant neighborhood features in 1 metric, and the multimodal response to the negatively biased condition, controlling for age, sex, medication, and psychopathology. RESULTS: Youths from less-resourced neighborhoods responded with less anger (p < .001, marginal R2 = 0.42) and more sadness (p < .001, marginal R2 = 0.46) to the negatively biased condition than youths from well-resourced neighborhoods. On the neurobiological level, lower COI scores were associated with a more localized processing mode (p = .039, marginal R2 = 0.076), reduced connectivity between the somatic-motor-salience and the control network (p = .041, marginal R2 = 0.040), and fewer provincial hubs in the somatic-motor-salience, control, and default mode networks (all pFWE < .05). CONCLUSION: The present study adds to a growing literature documenting how inequity may affect the brain and emotions in youths. Future work should test whether findings generalize to more diverse samples and should explore effects on neurodevelopmental trajectories and emerging mood disorders during adolescence. DIVERSITY & INCLUSION STATEMENT: One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper received support from a program designed to increase minority representation in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38452811

RESUMO

OBJECTIVE: Irritability, inattention, and hyperactivity, which are common presentations of childhood psychopathology, have been associated with perturbed white matter microstructure. However, similar tracts have been implicated across these phenotypes; such non-specificity could be rooted in their high co-occurrence. To address this problem, we use a bifactor approach parsing unique and shared components of irritability, inattention, and hyperactivity, which we then relate to white matter microstructure. METHOD: We developed a bifactor model based on the Conners Comprehensive Behavioral Rating Scale in a sample of youth with no psychiatric diagnosis or a primary diagnosis of attention-deficit/hyperactivity disorder or disruptive mood dysregulation disorder (n = 521). We applied the model to an independent yet sociodemographically and clinically comparable sample (n = 152), in which we tested associations between latent variables and fractional anisotropy (FA). RESULTS: The bifactor model fit well (comparative fit index = 0.99; root mean square error of approximation = 0.07). The shared factor was positively associated with an independent measure of impulsivity (ρS = 0.88, pFDR < .001) and negatively related to whole-brain FA (r = -0.20), as well as FA of the corticospinal tract (all pFWE < .05). FA increased with age and deviation from this curve, indicating that altered white matter maturation was associated with the hyperactivity-specific factor (r = -0.16, pFWE < .05). Inattention-specific and irritability-specific factors were not linked to FA. CONCLUSION: Perturbed white matter microstructure may represent a shared neurobiological mechanism of irritability, inattention, and hyperactivity related to heightened impulsivity. Furthermore, hyperactivity might be uniquely associated with a delay in white matter maturation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38272350

RESUMO

OBJECTIVE: Irritability and attention-deficit/hyperactivity disorder (ADHD) symptoms frequently co-occur in youth. Although ADHD has been associated with inhibitory control deficits, the literature on irritability and inhibitory control is mixed. Examining how irritability, ADHD symptoms, and inhibitory control interrelate both cross-sectionally and longitudinally across development could shed light on common and distinct mechanisms of youth psychopathology. METHOD: We utilized a cross-lagged panel model with data from 2 time points (at ages 10 and 12 years) of the Adolescent Brain and Cognitive Development (ABCD) Study (N = 7,444, or ∼63% of the baseline sample with full data at each time point) to test cross-sectional and longitudinal associations among parent-reported irritability and ADHD symptoms and behaviorally assessed inhibitory control. This was performed separately across discovery and replication subsamples, each n = 3,722. RESULTS: As expected, irritability and ADHD symptoms exhibited strong cross-sectional and reciprocal cross-lagged associations. Higher ADHD symptoms at age 10 years were associated concurrently with poorer inhibitory control and predicted poorer inhibitory control at age 12. Contrary to predictions, inhibitory control was not significantly associated with irritability cross-sectionally, nor was it predictive of later irritability or ADHD symptoms. CONCLUSION: These findings highlight strong links between irritability and ADHD. Although inhibitory control deficits were linked to ADHD and predictive of its symptom course, inhibitory control had no significant associations with irritability. Future research should investigate other candidate mechanisms of the co-occurrence of irritability and ADHD symptoms and predictors of their developmental trajectories.

4.
Obesity (Silver Spring) ; 29(9): 1516-1525, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318605

RESUMO

OBJECTIVE: Neurocognitive differences in pediatric obesity may be underpinned by cortical structural alterations. Differences in cortical thickness associated with severe obesity were examined, and preliminary evidence was sought for changes following vertical sleeve gastrectomy (VSG). METHODS: A total of 18 adolescents with severe obesity (OB) and 17 without obesity (nOB), aged 14 to 21, underwent T1-weighted structural magnetic resonance imaging. A subset was scanned twice 5 months apart to compare cortical thickness following VSG (n = 6) with two control groups: wait-listed (n = 9) and nOB (n = 12). RESULTS: At baseline, OB had a thinner cortex than nOB in motor and superior parietal cortices. At follow-up, VSG adolescents lost weight, the wait-listed group gained weight, and nOB did not change. Group × Time interactions indicated that VSG had cortical thinning in orbitofrontal, primary sensorimotor, superior, and middle temporal cortices and thickening in lingual, fusiform, and lateral occipital cortices. Wait-listed and nOB groups largely did not change. CONCLUSIONS: Severe obesity is associated with a thinner cortex in motor and attentional function-associated regions. VSG resulted in cortical thinning in reward valuation, sensory, and perceptual regions and thickening in visual regions. Surgery-related changes in regions distinct from those associated with obesity suggest compensation, rather than normalization. These results provide preliminary evidence supporting structural neural alterations following sleeve gastrectomy.


Assuntos
Obesidade Mórbida , Obesidade Infantil , Adolescente , Criança , Gastrectomia , Humanos , Imageamento por Ressonância Magnética , Obesidade Mórbida/diagnóstico por imagem , Obesidade Mórbida/cirurgia , Obesidade Infantil/diagnóstico por imagem , Obesidade Infantil/cirurgia , Recompensa
6.
Neuropsychologia ; 96: 184-191, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017818

RESUMO

In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones. Two event-related-potential (ERP) components classically associated with the processing of stimulus conflict are the fronto-central, incongruency-related negativity (Ninc) and the posterior late-positive complex (LPC), which are derived from the ERP difference waves for incongruent minus congruent trials. It has been questioned, however, whether these effects, or other neural measures of incongruency (e.g., fMRI responses in the anterior cingulate), reflect true conflict processing, or whether such effects derive mainly from differential time-on-task. To address this question, we leveraged high-temporal-resolution ERP measures of brain activity during two behavioral tasks. The first task, a modified Erikson flanker paradigm (with congruent and incongruent trials), was used to evoke the classic RT and ERP effects associated with conflict. The second was a non-conflict control task in which, participants visually discriminated a single stimulus (with easy and hard discrimination conditions). Behaviorally, the parameters were titrated to yield similar RT effects of conflict and difficulty (27ms). Neurally, both within-task contrasts showed an initial fronto-central negative-polarity wave (N2-latency effect), but they then diverged. In the difficulty difference wave, the initial negativity led directly into the posterior LPC, whereas in the incongruency contrast the initial negativity was followed a by a second fronto-central negative peak (Ninc), which was then followed by a considerably longer-latency LPC. These results provide clear evidence that the longer processing for incongruent stimulus inputs do not just reflect time-on-task or difficulty, but include a true conflict-processing component.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Cognição/fisiologia , Conflito Psicológico , Potenciais Evocados/fisiologia , Tempo de Reação/fisiologia , Adolescente , Adulto , Discriminação Psicológica , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
7.
Neuropsychologia ; 84: 14-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26827917

RESUMO

Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options.


Assuntos
Encéfalo/fisiologia , Conflito Psicológico , Função Executiva/fisiologia , Idioma , Percepção Espacial/fisiologia , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tempo de Reação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...