Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Commun ; 15(1): 3176, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653971

RESUMO

Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.

2.
Anesth Analg ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37968836

RESUMO

Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.

3.
Proc Natl Acad Sci U S A ; 120(39): e2304152120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722047

RESUMO

Millennial-scale ice sheet variability (1-15 kyr periods) is well documented in the Quaternary, providing insight into critical atmosphere-ocean-cryosphere interactions that can inform the mechanism and pace of future climate change. Ice sheet variability at similar frequencies is comparatively less known and understood prior to the Quaternary during times, where higher atmospheric pCO2 and warmer climates prevailed, and continental-scale ice sheets were largely restricted to Antarctica. In this study, we evaluate a high-resolution clast abundance dataset (ice-rafted debris) that captures East Antarctic ice sheet variability in the western Ross Sea during the early Miocene. This dataset is derived from a 100 m-thick mudstone interval in the ANtarctic DRILLing (ANDRILL or AND) core 2A, which preserves a record of precession and eccentricity variability. The sedimentation rates are of appropriate resolution to also characterize the signature of robust, subprecession cyclicity. Strong sub-precession (~10 kyr) cyclicity is observed, with an amplitude modulation in lockstep with eccentricity, indicating a relationship between high-frequency Antarctic ice sheet dynamics and astronomical forcing. Bicoherence analysis indicates that many of the observed millennial-scale cycles (as short as 1.2 kyr) are associated with nonlinear interactions (combination or difference tones) between each other and the Milankovitch cycles. The presence of these cycles during the Miocene reveals the ubiquity of millennial-scale ice sheet variability and sheds light on the interactions between Earth's atmosphere, ocean, and ice in climates warmer than the Quaternary.

4.
Front Public Health ; 11: 1140441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546328

RESUMO

Introduction: Wastewater surveillance has proven to be a valuable approach to monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and other respiratory pathogens, numerous wastewater virus sampling and concentration methods have been tested for appropriate applications as well as their significance for actionability by public health practices. Methods: Here, we present a 34-week long wastewater surveillance study that covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. Three primary concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow rate, population, total suspended solids) to account for variations in flow. Three analytical approaches were implemented to compare wastewater viral concentrations across the three primary concentration methods to COVID-19 clinical data for both normalized and non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony. Results: It was found that VIRADEL, which captures free and suspended virus from supernatant wastewater, was a leading indicator of COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from sediments in the interceptors. Discussion: These results indicate that the VIRADEL method can be used to enhance the early-warning potential of wastewater surveillance applications although drawbacks include the need to process large volumes of wastewater to concentrate sufficiently free and suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow a large number of samples to be processed concurrently while being more cost-effective and with rapid turn-around yielding results same day as collection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Front Microbiol ; 14: 1199641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455749

RESUMO

Introduction: Planktothrix agardhii is a microcystin-producing cyanobacterium found in Sandusky Bay, a shallow and turbid embayment of Lake Erie. Previous work in other systems has indicated that cyanophages are an important natural control factor of harmful algal blooms. Currently, there are few cyanophages that are known to infect P. agardhii, with the best-known being PaV-LD, a tail-less cyanophage isolated from Lake Donghu, China. Presented here is a molecular characterization of Planktothrix specific cyanophages in Sandusky Bay. Methods and Results: Putative Planktothrix-specific viral sequences from metagenomic data from the bay in 2013, 2018, and 2019 were identified by two approaches: homology to known phage PaV-LD, or through matching CRISPR spacer sequences with Planktothrix host genomes. Several contigs were identified as having viral signatures, either related to PaV-LD or potentially novel sequences. Transcriptomic data from 2015, 2018, and 2019 were also employed for the further identification of cyanophages, as well as gene expression of select viral sequences. Finally, viral quantification was tested using qPCR in 2015-2019 for PaV-LD like cyanophages to identify the relationship between presence and gene expression of these cyanophages. Notably, while PaV-LD like cyanophages were in high abundance over the course of multiple years (qPCR), transcriptomic analysis revealed only low levels of viral gene expression. Discussion: This work aims to provide a broader understanding of Planktothrix cyanophage diversity with the goals of teasing apart the role of cyanophages in the control and regulation of harmful algal blooms and designing monitoring methodology for potential toxin-releasing lysis events.

6.
Nat Commun ; 14(1): 2714, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202379

RESUMO

Antarctica's continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.

7.
Front Microbiol ; 14: 1073753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846788

RESUMO

Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St. Clair-Detroit River-Lake Erie aquatic corridor. We found that the aquatic microbiome was structured along the flow path and influenced mainly by higher nutrient concentrations in the Thames River, and higher temperature and pH downstream in Lake St. Clair and Lake Erie. The same dominant bacterial phyla were detected along the water continuum, changing only in relative abundance. At finer taxonomical level, however, there was a clear shift in the cyanobacterial community, with Planktothrix dominating in the Thames River and Microcystis and Synechococcus in Lake St. Clair and Lake Erie. Mantel correlations highlighted the importance of geographic distance in shaping the microbial community structure. The fact that a high proportion of microbial sequences found in the Western Basin of Lake Erie were also identified in the Thames River, indicated a high degree of connectivity and dispersal within the system, where mass effect induced by passive transport play an important role in microbial community assembly. Nevertheless, some cyanobacterial amplicon sequence variants (ASVs) related to Microcystis, representing less than 0.1% of relative abundance in the upstream Thames River, became dominant in Lake St. Clair and Erie, suggesting selection of those ASVs based on the lake conditions. Their extremely low relative abundances in the Thames suggest additional sources are likely to contribute to the rapid development of summer and fall blooms in the Western Basin of Lake Erie. Collectively, these results, which can be applied to other watersheds, improve our understanding of the factors influencing aquatic microbial community assembly and provide new perspectives on how to better understand the occurrence of cHABs in Lake Erie and elsewhere.

9.
Front Microbiol ; 13: 1075621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741884

RESUMO

Cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis aeruginosa threaten the ecological integrity and beneficial uses of lakes globally. In addition to producing hepatotoxic microcystins (MC), M. aeruginosa exudates (MaE) contain various compounds with demonstrated toxicity to aquatic biota. Previously, we found that the ecotoxicity of MaE differed between MC-producing and MC-free strains at exponential (E-phase) and stationary (S-phase) growth phases. However, the components in these exudates and their specific harmful effects were unclear. In this study, we performed untargeted metabolomics based on liquid chromatography-mass spectrometry to reveal the constituents in MaE of a MC-producing and a MC-free strain at both E-phase and S-phase. A total of 409 metabolites were identified and quantified based on their relative abundance. These compounds included lipids, organoheterocyclic compounds, organic acid, benzenoids and organic oxygen compounds. Multivariate analysis revealed that strains and growth phases significantly influenced the metabolite profile. The MC-producing strain had greater total metabolites abundance than the MC-free strain at S-phase, whereas the MC-free strain released higher concentrations of benzenoids, lipids, organic oxygen, organic nitrogen and organoheterocyclic compounds than the MC-producing strain at E-phase. Total metabolites had higher abundance in S-phase than in E- phase in both strains. Analysis of differential metabolites (DMs) and pathways suggest that lipids metabolism and biosynthesis of secondary metabolites were more tightly coupled to growth phases than to strains. Abundance of some toxic lipids and benzenoids DMs were significantly higher in the MC-free strain than the MC-producing one. This study builds on the understanding of MaE chemicals and their biotoxicity, and adds to evidence that non-MC-producing strains of cyanobacteria may also pose a threat to ecosystem health.

10.
J Environ Sci (China) ; 107: 218-229, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412784

RESUMO

Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.


Assuntos
COVID-19 , RNA Viral , Humanos , Laboratórios , Pandemias , SARS-CoV-2 , Águas Residuárias
11.
J Phycol ; 57(2): 677-688, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483964

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater lakes across the globe are often combined with other stressors. Pharmaceutical pollution, especially antibiotics in water bodies, poses a potential hazard in aquatic ecosystems. However, how antibiotics influence the risk of cyanoHABs remains unclear. Here, we investigated the effects of norfloxacin (NOR), one of the most widely used antibiotics globally, to a bloom-forming cyanobacterium (Microcystis aeruginosa) and a common green alga (Scenedesmus quadricauda), under both mono- and coculture conditions. Taxon-specific responses to NOR were evaluated in monoculture. In addition, the growth rate and change in ratio of cyanobacteria to green algae when cocultured with exposure to NOR were determined. In monocultures of Microcystis, exposure to low concentrations of NOR resulted in decreases in biomass, chlorophyll a and soluble protein content, while superoxide anion content and superoxide dismutase activity increased. However, NOR at high concentration only slightly affected Scenedesmus. During the co-culture trials of Microcystis and Scenedesmus, the 5 µg · L-1 NOR treatment increased the ratio of Microcystis to co-cultured Scenedesmus by 47.2%. Meanwhile, although Scenedesmus growth was enhanced by 4.2% under NOR treatment in monoculture, it was conversely inhibited by 63.4% and 38.2% when co-cultured with Microcystis with and without NOR, respectively. Our results indicate that antibiotic pollution has a potential risk to enhance the perniciousness of cyanoHABs by disturbing interspecific interaction between cyanobacteria and green algae. These results reinforce the need for scientists and managers to consider the influence of xenobiotics in shaping the outcome of interactions among multiple species in aquatic ecosystems.


Assuntos
Cianobactérias , Microcystis , Antibacterianos , Clorofila A , Ecossistema , Norfloxacino
12.
Sci Adv ; 5(8): eaav8754, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31565668

RESUMO

Modern observations appear to link warming oceanic conditions with Antarctic ice sheet grounding-line retreat. Yet, interpretations of past ice sheet retreat over the last deglaciation in the Ross Embayment, Antarctica's largest catchment, differ considerably and imply either extremely high or very low sensitivity to environmental forcing. To investigate this, we perform regional ice sheet simulations using a wide range of atmosphere and ocean forcings. Constrained by marine and terrestrial geological data, these models predict earliest retreat in the central embayment and rapid terrestrial ice sheet thinning during the Early Holocene. We find that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, however, grounding-line position is much more sensitive to subshelf melt rates, implicating ocean thermal forcing as the key driver of past ice sheet retreat.

13.
Front Microbiol ; 10: 2081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551998

RESUMO

This study examined diel shifts in metabolic functions of Microcystis spp. during a 48-h Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of recently sequenced lower Great Lakes Microcystis isolates showed distinct patterns of gene expression between samples collected across day (10:00 h, 16:00 h) and night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to Photosystem II (e.g., psbA), nitrogen and phosphate acquisition, cell division (ftsHZ), heat shock response (dnaK, groEL), and uptake of inorganic carbon (rbc, bicA). Genes transcribed during nighttime included those involved in phycobilisome protein synthesis and Photosystem I core subunits. Hierarchical clustering and principal component analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas daytime transcripts were separated from each other over the 48-h duration. Lack of uniform clustering within the daytime transcripts suggested that the partitioning of gene expression in Microcystis is dependent on both circadian regulation and physicochemical changes within the environment.

14.
Harmful Algae ; 81: 42-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638497

RESUMO

Sandusky Bay, Lake Erie, receives high nutrient loadings (nitrogen and phosphorus) from the Sandusky River, which drains an agricultural watershed. Eutrophication and cyanobacterial harmful algal blooms (cyanoHABs) persist throughout summer. Planktothrix agardhii is the dominant bloom-forming species and the main producer of microcystins in Sandusky Bay. Non-N2 fixing cyanobacteria, such as Planktothrix and Microcystis, thrive on chemically reduced forms of nitrogen, such as ammonium (NH4+) and urea. Ammonium regeneration and potential uptake rates and total microbial community demand for NH4+ were quantified in Sandusky Bay. Potential NH4+ uptake rates in the light increased from June to August at all stations. Dark uptake rates also increased seasonally and, by the end of August, were on par with light uptake rates. Regeneration rates followed a similar pattern and were significantly higher in August than June. Ammonium uptake kinetics during a Planktothrix-dominated bloom in Sandusky Bay and a Microcystis-dominated bloom in Maumee Bay were also compared. The highest half saturation constant (Km) in Sandusky Bay was measured in June and decreased throughout the season. In contrast, Km values in Maumee Bay were lowest at the beginning of summer and increased in October. A significant increase in Vmax in Sandusky Bay was observed between July and the end of August, reflective of intense competition for depleted NH4+. Metatranscriptome results from Sandusky Bay show a shift from cyanophycin synthetase (luxury NH4+ uptake; cphA1) expression in early summer to cyanophycinase (intracellular N mobilization; cphB/cphA2) expression in August, supporting the interpretation that the microbial community is nitrogen-starved in late summer. Combined, our results show that, in late summer, when nitrogen concentrations are low, cyanoHABs in Sandusky Bay rely on regenerated NH4+ to support growth and toxin production. Increased dark NH4+ uptake late in summer suggests an important heterotrophic contribution to NH4+ depletion in the phycosphere. Kinetic experiments in the two bays suggest a competitive advantage for Planktothrix over Microcystis in Sandusky Bay due to its higher affinity for NH4+ at low concentrations.


Assuntos
Compostos de Amônio , Cianobactérias , Baías , Isótopos , Lagos
15.
Harmful Algae ; 81: 59-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638499

RESUMO

Toxic cyanobacterial harmful algal blooms (cyanoHABs) are one of the most significant threats to the security of Earth's surface freshwaters. In the United States, the Federal Water Pollution Control Act of 1972 (i.e., the Clean Water Act) requires that states report any waterbody that fails to meet applicable water quality standards. The problem is that for fresh waters impacted by cyanoHABs, no scientifically-based framework exists for making this designation. This study describes the development of a data-based framework using the Ohio waters of western Lake Erie as an exemplar for large lakes impacted by cyanoHABs. To address this designation for Ohio's open waters, the Ohio Environmental Protection Agency (EPA) assembled a group of academic, state and federal scientists to develop a framework that would determine the criteria for Ohio EPA to consider in deciding on a recreation use impairment designation due to cyanoHAB presence. Typically, the metrics are derived from on-lake monitoring programs, but for large, dynamic lakes such as Lake Erie, using criteria based on discrete samples is problematic. However, significant advances in remote sensing allows for the estimation of cyanoHAB biomass of an entire lake. Through multiple years of validation, we developed a framework to determine lake-specific criteria for designating a waterbody as impaired by cyanoHABs on an annual basis. While the criteria reported in this manuscript are specific to Ohio's open waters, the framework used to determine them can be applied to any large lake where long-term monitoring data and satellite imagery are available.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Lagos , Ohio , Estados Unidos , Qualidade da Água
16.
Med Sci Educ ; 29(1): 35-39, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34457446

RESUMO

Limited opportunity for teaching patient-care skills in clinical settings has increased the need for simulation training in medical education. However, this modality may be hard to sustain because of extensive time requirements and potential scheduling conflicts. The authors conducted a pilot randomized study to compare the immediate and long-term effects of using instructional video with self-directed practice to those of using simulation training with expert feedback. The results are promising for the use of instructional video-guided, self-directed deliberate practice; however, future studies with a larger sample from multiple institutions should replicate this study to confirm these results.

17.
Front Microbiol ; 10: 2741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921001

RESUMO

Microcystins are potent hepatotoxins that are frequently detected in fresh water lakes plagued by toxic cyanobacteria. Microbial biodegradation has been referred to as the most important avenue for removal of microcystin from aquatic environments. The biochemical pathway most commonly associated with the degradation of microcystin is encoded by the mlrABCD (mlr) cassette. The ecological significance of this pathway remains unclear as no studies have examined the expression of these genes in natural environments. Six metatranscriptomes were generated from microcystin-producing Microcystis blooms and analyzed to assess the activity of this pathway in environmental samples. Seventy-eight samples were collected from Lake Erie, United States/Canada and Lake Tai (Taihu), China, and screened for the presence of mlr gene transcripts. Read mapping to the mlr cassette indicated transcripts for these genes were absent, with only 77 of the collective 3.7 billion reads mapping to any part of the mlr cassette. Analysis of the assembled metatranscriptomes supported this, with only distantly related sequences identified as mlrABC-like. These observations were made despite the presence of microcystin and over 500,000 reads mapping to the mcy cassette for microcystin production. Glutathione S-transferases and alkaline proteases have been previously hypothesized to be alternative pathways for microcystin biodegradation, and expression of these genes was detected across space and time in both lakes. While the activity of these alternative pathways needs to be experimentally confirmed, they may be individually or collectively more important than mlr genes in the natural environment. Importantly, the lack of mlr expression could indicate microcystin biodegradation was not occurring in the analyzed samples. This study raises interesting questions about the ubiquity, specificity and locality of microcystin biodegradation, and highlights the need for the characterization of relevant mechanisms in natural communities to understand the fate of microcystin in the environment and risk to public health.

18.
Environ Sci Technol ; 52(21): 12358-12367, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30264996

RESUMO

Ice-nucleating particles (INPs) associated with fresh waters are a neglected, but integral component of the water cycle. Abundant INPs were identified from surface waters of both the Maumee River and Lake Erie with ice nucleus spectra spanning a temperature range from -3 to -15 °C. The majority of river INPs were submicron in size and attributed to biogenic macromolecules, inferred from the denaturation of ice-nucleation activity by heat. In a watershed dominated by row-crop agriculture, higher concentrations of INPs were found in river samples compared to lake samples. Further, ice-nucleating temperatures differed between river and lake samples, which indicated different populations of INPs. Seasonal analysis of INPs that were active at warmer temperatures (≥-10 °C; INP-10) showed their concentration to correlate with river discharge, suggesting a watershed origin of these INPs. A terrestrial origin for INPs in the Maumee River was further supported by a correspondence between the ice-nucleation signatures of river INPs and INPs derived from the soil fungus Mortierella alpina. Aerosols derived from turbulence features in the river carry INP-10, although their potential influence on regional weather is unclear. INP-10 contained within aerosols generated from a weir spanning the river, ranged in concentration from 1 to 11 INP m-3, which represented a fold-change of 3.2 over average INP-10 concentrations sampled from aerosols at control locations.


Assuntos
Proteínas da Membrana Bacteriana Externa , Gelo , Congelamento , Solo , Temperatura
19.
Nature ; 561(7723): 383-386, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232420

RESUMO

Understanding ice sheet behaviour in the geological past is essential for evaluating the role of the cryosphere in the climate system and for projecting rates and magnitudes of sea level rise in future warming scenarios1-4. Although both geological data5-7 and ice sheet models3,8 indicate that marine-based sectors of the East Antarctic Ice Sheet were unstable during Pliocene warm intervals, the ice sheet dynamics during late Pleistocene interglacial intervals are highly uncertain3,9,10. Here we provide evidence from marine sedimentological and geochemical records for ice margin retreat or thinning in the vicinity of the Wilkes Subglacial Basin of East Antarctica during warm late Pleistocene interglacial intervals. The most extreme changes in sediment provenance, recording changes in the locus of glacial erosion, occurred during marine isotope stages 5, 9, and 11, when Antarctic air temperatures11 were at least two degrees Celsius warmer than pre-industrial temperatures for 2,500 years or more. Hence, our study indicates a close link between extended Antarctic warmth and ice loss from the Wilkes Subglacial Basin, providing ice-proximal data to support a contribution to sea level from a reduced East Antarctic Ice Sheet during warm interglacial intervals. While the behaviour of other regions of the East Antarctic Ice Sheet remains to be assessed, it appears that modest future warming may be sufficient to cause ice loss from the Wilkes Subglacial Basin.


Assuntos
Aquecimento Global/história , Camada de Gelo , Regiões Antárticas , Sedimentos Geológicos/química , História Antiga , Temperatura Alta , Água do Mar/análise
20.
Nat Commun ; 9(1): 317, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358604

RESUMO

Observations and model experiments highlight the importance of ocean heat in forcing ice sheet retreat during the present and geological past, but past ocean temperature data are virtually missing in ice sheet proximal locations. Here we document paleoceanographic conditions and the (in)stability of the Wilkes Land subglacial basin (East Antarctica) during the mid-Miocene (~17-13.4 million years ago) by studying sediment cores from offshore Adélie Coast. Inland retreat of the ice sheet, temperate vegetation, and warm oligotrophic waters characterise the mid-Miocene Climatic Optimum (MCO; 17-14.8 Ma). After the MCO, expansion of a marine-based ice sheet occurs, but remains sensitive to melting upon episodic warm water incursions. Our results suggest that the mid-Miocene latitudinal temperature gradient across the Southern Ocean never resembled that of the present day. We demonstrate that a strong coupling of oceanic climate and Antarctic continental conditions existed and that the East Antarctic subglacial basins were highly sensitive to ocean warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...