Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 8, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172911

RESUMO

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Assuntos
Agricultura , Fenômica , Estados Unidos , Genômica
2.
Mamm Genome ; 34(3): 418-436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460664

RESUMO

Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.


Assuntos
Animais Domésticos , Bases de Dados Genéticas , Animais , Bovinos , Suínos , Cavalos/genética , Ovinos/genética , Animais Domésticos/genética , Anotação de Sequência Molecular , Genoma/genética , Mapeamento Cromossômico , Cabras/genética
3.
Front Genet ; 12: 628849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093640

RESUMO

The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the broader livestock species FAANG initiative, aims to identify and characterize gene regulatory elements in domestic sheep. Regulatory element annotation is essential for identifying genetic variants that affect health and production traits in this important agricultural species, as greater than 90% of variants underlying genetic effects are estimated to lie outside of transcribed regions. Histone modifications that distinguish active or repressed chromatin states, CTCF binding, and DNA methylation were used to characterize regulatory elements in liver, spleen, and cerebellum tissues from four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin states including active promoters, active enhancers, poised enhancers, repressed enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-genome bisulfite sequencing (WGBS) was performed to determine the complement of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and hypomethylated regions were identified across tissues, and these locations were compared with chromatin states to better distinguish and validate regulatory elements in these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1 in the spleen and cerebellum and CTCF in the liver displayed the greatest number of hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and promoters in the cerebellum, displayed the greatest number of hypomethylated sites. Overall, chromatin states defined by histone marks and CTCF occupied approximately 22% of the genome in all three tissues. Furthermore, the liver and spleen displayed in common the greatest percent of active promoter (65%) and active enhancer (81%) states, and the liver and cerebellum displayed in common the greatest percent of poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs were identified in all three tissues, with the highest number of unique motifs identified in the cerebellum. In summary, this study has identified the regulatory regions of genes in three tissues that play key roles in defining health and economically important traits and has set the precedent for the characterization of regulatory elements in ovine tissues using the Rambouillet reference genome.

4.
Gigascience ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191811

RESUMO

BACKGROUND: Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10-12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. RESULTS: We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use. CONCLUSIONS: We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species.


Assuntos
Cruzamento/normas , Bovinos/genética , Genoma , Genômica/normas , Polimorfismo Genético , Animais , Cruzamento/métodos , Genômica/métodos , RNA-Seq/métodos , RNA-Seq/normas , Padrões de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
5.
PLoS One ; 14(9): e0222329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513639

RESUMO

Methylation patterns established and maintained at CpG sites may be altered by single nucleotide polymorphisms (SNPs) within these sites and may affect the regulation of nearby genes. Our aims were to: 1) identify and generate a database of SNPs potentially subject to epigenetic control by DNA methylation via their involvement in creating, removing or displacing CpG sites (meSNPs), and; 2) investigate the association of these meSNPs with CpG islands (CGIs), and with methylation profiles of DNA extracted from tissues from cattle with divergent feed efficiencies detected using MIRA-Seq. Using the variant annotation for 56,969,697 SNPs identified in Run5 of the 1000 Bull Genomes Project and the UMD3.1.1 bovine reference genome sequence assembly, we identified and classified 12,836,763 meSNPs according to the nature of variation created at CpGs. The majority of the meSNPs were located in intergenic regions (68%) or introns (26.3%). We found an enrichment (p<0.01) of meSNPs located in CGIs relative to the genome as a whole, and also in differentially methylated sequences in tissues from animals divergent for feed efficiency. Seven meSNPs, located in differentially methylated regions, were fixed for methylation site creating (MSC) or destroying (MSD) alleles in the differentially methylated genomic sequences of animals differing in feed efficiency. These meSNPs may be mechanistically responsible for creating or deleting methylation targets responsible for the differential expression of genes underlying differences in feed efficiency. Our methyl SNP database (dbmeSNP) is useful for identifying potentially functional "epigenetic polymorphisms" underlying variation in bovine phenotypes.


Assuntos
Bovinos/genética , Ilhas de CpG/genética , Epigênese Genética/genética , Animais , DNA/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Epigenômica/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
6.
Front Genet ; 10: 1197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921279

RESUMO

Automated high-throughput phenotyping with sensors, imaging, and other on-farm technologies has resulted in a flood of data that are largely under-utilized. Drastic cost reductions in sequencing and other omics technology have also facilitated the ability for deep phenotyping of livestock at the molecular level. These advances have brought the animal sciences to a cross-roads in data science where increased training is needed to manage, record, and analyze data to generate knowledge and advances in Agriscience related disciplines. This paper describes the opportunities and challenges in using high-throughput phenotyping, "big data," analytics, and related technologies in the livestock industry based on discussions at the Livestock High-Throughput Phenotyping and Big Data Analytics meeting, held in November 2017 (see: https://www.animalgenome.org/bioinfo/community/workshops/2017/). Critical needs for investments in infrastructure for people (e.g., "big data" training), data (e.g., data transfer, management, and analytics), and technology (e.g., development of low cost sensors) were defined by this group. Though some subgroups of animal science have extensive experience in predictive modeling, cross-training in computer science, statistics, and related disciplines are needed to use big data for diverse applications in the field. Extensive opportunities exist for public and private entities to harness big data to develop valuable research knowledge and products to the benefit of society under the increased demands for food in a rapidly growing population.

7.
Curr Opin Insect Sci ; 26: 34-40, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764658

RESUMO

Although pesticides are a major selective force in driving the evolution of insect pests, the evolutionary processes that give rise to insecticide resistance remain poorly understood. Insecticide resistance has been widely observed to increase with frequent and intense insecticide exposure, but can be lost following the relaxation of insecticide use. One possible but rarely explored explanation is that insecticide resistance may be associated with epigenetic modifications, which influence the patterning of gene expression without changing underlying DNA sequence. Epigenetic modifications such as DNA methylation, histone modifications, and small RNAs have been observed to be heritable in arthropods, but their role in the context of rapid evolution of insecticide resistance remain poorly understood. Here, we discuss evidence supporting how: firstly, insecticide-induced effects can be transgenerationally inherited; secondly, epigenetic modifications are heritable; and thirdly, epigenetic modifications are responsive to pesticide and xenobiotic stress. Therefore, pesticides may drive the evolution of resistance via epigenetic processes. Moreover, insect pests primed by pesticides may be more tolerant of other stress, further enhancing their success in adapting to agroecosystems. Resolving the role of epigenetic modifications in the rapid evolution of insect pests has the potential to lead to new approaches for integrated pest management as well as improve our understanding of how anthropogenic stress may drive the evolution of insect pests.


Assuntos
Evolução Biológica , Epigênese Genética , Insetos/genética , Resistência a Inseticidas/fisiologia , Animais , Produção Agrícola , Inseticidas
8.
F1000Res ; 7: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479424

RESUMO

Background: Moose ( Alces alces) colonized the North American continent from Asia less than 15,000 years ago, and spread across the boreal forest regions of Canada and the northern United States (US).  Contemporary populations have low genetic diversity, due either to low number of individuals in the original migration (founder effect), and/or subsequent population bottlenecks in North America.  Genetic tests based on informative single nucleotide polymorphism (SNP) markers are helpful in forensic and wildlife conservation activities, but have been difficult to develop for moose, due to the lack of a reference genome assembly and whole genome sequence (WGS) data. Methods:  WGS data were generated for four individual moose from the US states of Alaska, Idaho, Wyoming, and Vermont with minimum and average genome coverage depths of 14- and 19-fold, respectively.  Cattle and sheep reference genomes were used for aligning sequence reads and identifying moose SNPs. Results:  Approximately 11% and 9% of moose WGS reads aligned to cattle and sheep genomes, respectively.  The reads clustered at genomic segments, where sequence identity between these species was greater than 95%.  In these segments, average mapped read depth was approximately 19-fold.  Sets of 46,005 and 36,934 high-confidence SNPs were identified from cattle and sheep comparisons, respectively, with 773 and 552 of those having minor allele frequency of 0.5 and conserved flanking sequences in all three species.  Among the four moose, heterozygosity and allele sharing of SNP genotypes were consistent with decreasing levels of moose genetic diversity from west to east.  A minimum set of 317 SNPs, informative across all four moose, was selected as a resource for future SNP assay design. Conclusions:  All SNPs and associated information are available, without restriction, to support development of SNP-based tests for animal identification, parentage determination, and estimating relatedness in North American moose.

9.
BMC Genomics ; 18(1): 476, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645321

RESUMO

BACKGROUND: DNA methylation is a frequently studied epigenetic modification due to its role in regulating gene expression and hence in biological processes and in determining phenotypic plasticity in organisms. Rudimentary DNA methylation patterns for some livestock species are publically available: among these, goat methylome deserves to be further explored. RESULTS: Genome-wide DNA methylation maps of the hypothalamus and ovary from Saanen goats were generated using Methyl-CpG binding domain protein sequencing (MBD-seq). Analysis of DNA methylation patterns indicate that the majority of methylation peaks found within genes are located gene body regions, for both organs. Analysis of the distribution of methylated sites per chromosome showed that chromosome X had the lowest number of methylation peaks. The X chromosome has one of the highest percentages of methylated CpG islands in both organs, and approximately 50% of the CpG islands in the goat epigenome are methylated in hypothalamus and ovary. Organ-specific Differentially Methylated Genes (DMGs) were correlated with the expression levels. CONCLUSIONS: The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance.


Assuntos
Metilação de DNA , Genômica , Cabras/genética , Hipotálamo/metabolismo , Ovário/metabolismo , Animais , Cromossomos de Mamíferos/genética , Ilhas de CpG/genética , Feminino , Especificidade de Órgãos
10.
Hematol Oncol ; 35(1): 25-33, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26011749

RESUMO

DNA methylation is an epigenetic modification that plays an important role in the regulation of gene expression. The function of RUNDC3B has yet to be determined, although its dysregulated expression has been associated with malignant potential of both breast and lung carcinoma. To elucidate the potential of using DNA methylation in RUNDC3B as a biomarker in lymphoid malignancies, the methylation status of six regions spanning the CpG island in the promoter region of RUNDC3B was determined in cancer cell lines. Lymphoid malignancies were found to have more prominent methylation and did not express RUNDC3B compared with myeloid malignancies and solid tumours, supporting the potential use of DNA methylation in this region as a biomarker for lymphoid malignancies. RUNDC3B contains a RUN domain in its N-terminal region that mediates interaction with Rap2, an important component of the mitogen-activated protein kinase (MAPK) cascade, which regulates cellular proliferation and differentiation. The protein sequence of RUNDC3B also contains characteristic binding sites for MAPK intermediates. Therefore, it is possible that RUNDC3B serves as a mediator between Rap2 and the MAPK signalling cascade. Three genes with MAPK-inducible expression were downregulated in a methylated leukaemia cell line (HSPA5, Jun and Fos). Jun and Fos combine to form the activating protein 1 transcription factor, and loss of this factor is associated with the dysregulation of genes involved in differentiation and proliferation. We hypothesize that the loss of RUNDC3B secondary to aberrant hypermethylation of the early growth response 3 transcription factor binding site results in dysregulated MAPK signalling and carcinogenesis in lymphoid malignancies. © 2015 The Authors. Hematological Oncology published by John Wiley & Sons Ltd.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Células A549 , Sítios de Ligação , Biomarcadores Tumorais/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Ilhas de CpG , Chaperona BiP do Retículo Endoplasmático , Epigênese Genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases , Domínios Proteicos , Proteínas rap de Ligação ao GTP/metabolismo
11.
BMC Genomics ; 17: 258, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009155

RESUMO

BACKGROUND: We have previously found substantial animal-to-animal and age-dependent variation in the response of Holstein fibroblast cultures challenged with LPS. To expand on this finding, fibroblast cultures were established from dairy (Holstein) and beef (Angus) cattle and challenged with LPS to examine breed-dependent differences in the innate immune response. Global gene expression was measured by RNA-Seq, while an epigenetic basis for expression differences was examined by methylated CpG island recovery assay sequencing (MIRA-Seq) analysis. RESULTS: The Holstein breed displayed a more robust response to LPS than the Angus breed based on RNA-Seq analysis of cultures challenged with LPS for 0, 2, and 8 h. Several immune-associated genes were expressed at greater levels (FDR < 0.05) in Holstein cultures including TLR4 at all time points and a number of pro-inflammatory genes such as IL8, CCL20, CCL5, and TNF following LPS exposure. Despite extensive breed differences in the transcriptome, MIRA-Seq unveiled relatively similar patterns of genome-wide DNA methylation between breeds, with an overall hypomethylation of gene promoters. However, by examining the genome in 3Kb windows, 49 regions of differential methylation were discovered between Holstein and Angus fibroblasts, and two of these regions fell within the promoter region (-2500 to +500 bp of the transcription start site) of the genes NTRK2 and ADAMTS5. CONCLUSIONS: Fibroblasts isolated from Holstein cattle display a more robust response to LPS in comparison to cultures from Angus cattle. Different selection strategies and management practices exist between these two breeds that likely give rise to genetic and epigenetic factors contributing to the different immune response phenotypes.


Assuntos
Bovinos/genética , Metilação de DNA , Fibroblastos/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/farmacologia , Animais , Cruzamento , Células Cultivadas , Ilhas de CpG , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Fenótipo , Análise de Sequência de RNA , Transcriptoma
12.
Epigenetics ; 10(9): 882-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26308964

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼ 90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Sequência de DNA/métodos , Adolescente , Criança , Pré-Escolar , Ilhas de CpG , Epigênese Genética , Feminino , Genoma Humano , Humanos , Lactente , Masculino , Regiões Promotoras Genéticas
13.
BMC Genomics ; 16: 30, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623529

RESUMO

BACKGROUND: By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We now expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and also investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness. RESULTS: Age-dependent differences in IL-8 production by fibroblasts in response to LPS exposure for 24 h were abolished by pretreatment of cultures with a DNA demethylation agent, 5-aza-2'deoxycytidine (AZA). RNA-Seq analysis of fibroblasts collected from the same individuals at either 5 or 16 months of age and exposed in parallel to LPS for 0, 2, and 8 h revealed a robust response to LPS that was much greater in the cultures from older animals. Pro-inflammatory genes including IL-8, IL-6, TNF-α, and CCL20 (among many other immune associated genes), were more highly expressed (FDR < 0.05) in the 16-month old cultures following LPS exposure. Methylated CpG island recovery assay sequencing (MIRA-Seq) revealed numerous methylation peaks spread across the genome, combined with an overall hypomethylation of gene promoter regions, and a remarkable similarity, except for 20 regions along the genome, between the fibroblasts collected at the two ages from the same animals. CONCLUSIONS: The fibroblast pro-inflammatory response to LPS increases dramatically from 5 to 16 months of age within individual animals. A better understanding of the mechanisms underlying this process could illuminate the physiological processes by which the innate immune response develops and possibly individual variation in innate immune response arises. In addition, although relatively unchanged by age, our data presents a general overview of the bovine fibroblast methylome as a guide for future studies in cattle epigenetics utilizing this cell type.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Imunidade Inata/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Bovinos , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Imunidade Inata/genética , Interleucina-8/biossíntese , Interleucina-8/genética , Lipopolissacarídeos/farmacologia
14.
PLoS Genet ; 10(3): e1004254, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675901

RESUMO

The domestication and development of cattle has considerably impacted human societies, but the histories of cattle breeds and populations have been poorly understood especially for African, Asian, and American breeds. Using genotypes from 43,043 autosomal single nucleotide polymorphism markers scored in 1,543 animals, we evaluate the population structure of 134 domesticated bovid breeds. Regardless of the analytical method or sample subset, the three major groups of Asian indicine, Eurasian taurine, and African taurine were consistently observed. Patterns of geographic dispersal resulting from co-migration with humans and exportation are recognizable in phylogenetic networks. All analytical methods reveal patterns of hybridization which occurred after divergence. Using 19 breeds, we map the cline of indicine introgression into Africa. We infer that African taurine possess a large portion of wild African auroch ancestry, causing their divergence from Eurasian taurine. We detect exportation patterns in Asia and identify a cline of Eurasian taurine/indicine hybridization in Asia. We also identify the influence of species other than Bos taurus taurus and B. t. indicus in the formation of Asian breeds. We detect the pronounced influence of Shorthorn cattle in the formation of European breeds. Iberian and Italian cattle possess introgression from African taurine. American Criollo cattle originate from Iberia, and not directly from Africa with African ancestry inherited via Iberian ancestors. Indicine introgression into American cattle occurred in the Americas, and not Europe. We argue that cattle migration, movement and trading followed by admixture have been important forces in shaping modern bovine genomic variation.


Assuntos
Animais Domésticos/genética , Cruzamento , Variação Genética , Filogenia , Alelos , Animais , Bovinos , Frequência do Gene , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único
16.
BMC Genomics ; 14: 382, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758707

RESUMO

BACKGROUND: The domestication and subsequent selection by humans to create breeds and biological types of cattle undoubtedly altered the patterning of variation within their genomes. Strong selection to fix advantageous large-effect mutations underlying domesticability, breed characteristics or productivity created selective sweeps in which variation was lost in the chromosomal region flanking the selected allele. Selective sweeps have now been identified in the genomes of many animal species including humans, dogs, horses, and chickens. Here, we attempt to identify and characterise regions of the bovine genome that have been subjected to selective sweeps. RESULTS: Two datasets were used for the discovery and validation of selective sweeps via the fixation of alleles at a series of contiguous SNP loci. BovineSNP50 data were used to identify 28 putative sweep regions among 14 diverse cattle breeds. Affymetrix BOS 1 prescreening assay data for five breeds were used to identify 85 regions and validate 5 regions identified using the BovineSNP50 data. Many genes are located within these regions and the lack of sequence data for the analysed breeds precludes the nomination of selected genes or variants and limits the prediction of the selected phenotypes. However, phenotypes that we predict to have historically been under strong selection include horned-polled, coat colour, stature, ear morphology, and behaviour. CONCLUSIONS: The bias towards common SNPs in the design of the BovineSNP50 assay led to the identification of recent selective sweeps associated with breed formation and common to only a small number of breeds rather than ancient events associated with domestication which could potentially be common to all European taurines. The limited SNP density, or marker resolution, of the BovineSNP50 assay significantly impacted the rate of false discovery of selective sweeps, however, we found sweeps in common between breeds which were confirmed using an ultra-high-density assay scored in a small number of animals from a subset of the breeds. No sweep regions were shared between indicine and taurine breeds reflecting their divergent selection histories and the very different environmental habitats to which these sub-species have adapted.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética/genética , Animais , Bovinos , Cães , Evolução Molecular , Humanos , Anotação de Sequência Molecular
17.
Physiol Genomics ; 45(8): 301-11, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23429212

RESUMO

Gene regulation and transcriptome studies have been enabled by the development of RNA-Seq applications for high-throughput sequencing platforms. Next generation sequencing is remarkably efficient and avoids many issues inherent in hybridization-based microarray methodologies including the exon-specific dependence of probe design. Biologically relevant transcripts including messenger and regulatory RNAs may now be quantified and annotated regardless of whether they have previously been observed. We used RNA-Seq to investigate global patterns of gene expression in early developing rat liver. Liver samples from timed-pregnant Lewis rats were collected at six fetal and neonatal stages [embryonic day (E)14, E16, E18, E20, postnatal day (P)1, P7], transcripts were sequenced using an Illumina HiSeq 2000, and data analysis was performed with the Tuxedo software suite. Genes and isoforms differing in abundance were queried for enrichment within functionally related gene groups using the Functional Annotation Tool of the DAVID Bioinformatics Database. While hematopoietic gene expression is initiated by E14, hepatocyte maturation is a gradual process involving clusters of genes responsible for response to nutrients and enzymes responsible for glycolysis and fatty acid catabolism. Following birth, a large cluster of differentially abundant genes was enriched for mitochondrial gene expression and cholesterol synthesis indicating that by 1 wk of age, the liver is engaged in lipid sensing and bile production. Clustering results for differentially abundant genes and isoforms were similar with the greatest difference for the E14/E16 comparison. Finally, a bioinformatic approach was used to annotate 1,307 novel liver transcripts assembled from sequences that aligned to intergenic regions of the rat genome.


Assuntos
Fígado/enzimologia , Fígado/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Animais Recém-Nascidos , Feminino , Gravidez , Ratos
18.
BMC Genomics ; 13: 606, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23140540

RESUMO

BACKGROUND: Several methods have recently been developed to identify regions of the genome that have been exposed to strong selection. However, recent theoretical and empirical work suggests that polygenic models are required to identify the genomic regions that are more moderately responding to ongoing selection on complex traits. We examine the effects of multi-trait selection on the genome of a population of US registered Angus beef cattle born over a 50-year period representing approximately 10 generations of selection. We present results from the application of a quantitative genetic model, called Birth Date Selection Mapping, to identify signatures of recent ongoing selection. RESULTS: We show that US Angus cattle have been systematically selected to alter their mean additive genetic merit for most of the 16 production traits routinely recorded by breeders. Using Birth Date Selection Mapping, we estimate the time-dependency of allele frequency for 44,817 SNP loci using genomic best linear unbiased prediction, generalized least squares, and BayesCπ analyses. Finally, we reconstruct the primary phenotypes that have historically been exposed to selection from a genome-wide analysis of the 16 production traits and gene ontology enrichment analysis. CONCLUSIONS: We demonstrate that Birth Date Selection Mapping utilizing mixed models corrects for time-dependent pedigree sampling effects that lead to spurious SNP associations and reveals genomic signatures of ongoing selection on complex traits. Because multiple traits have historically been selected in concert and most quantitative trait loci have small effects, selection has incrementally altered allele frequencies throughout the genome. Two quantitative trait loci of large effect were not the most strongly selected of the loci due to their antagonistic pleiotropic effects on strongly selected phenotypes. Birth Date Selection Mapping may readily be extended to temporally-stratified human or model organism populations.


Assuntos
Genoma , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Alelos , Animais , Teorema de Bayes , Cruzamento , Bovinos , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Análise dos Mínimos Quadrados , Masculino , Linhagem , Fenótipo , Fatores de Tempo
19.
Genet Sel Evol ; 43: 40, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22122853

RESUMO

BACKGROUND: Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction. METHODS: Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values. RESULTS: Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied. CONCLUSIONS: These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.


Assuntos
Cruzamento , Bovinos/genética , Genômica/métodos , Genômica/normas , Animais , Bovinos/crescimento & desenvolvimento , Análise por Conglomerados , Feminino , Masculino , Modelos Genéticos , Linhagem , Característica Quantitativa Herdável
20.
BMC Genet ; 12: 45, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21569514

RESUMO

BACKGROUND: Genetic markers can be used to identify and verify the origin of individuals. Motivation for the inference of ancestry ranges from conservation genetics to forensic analysis. High density assays featuring Single Nucleotide Polymorphism (SNP) markers can be exploited to create a reduced panel containing the most informative markers for these purposes. The objectives of this study were to evaluate methods of marker selection and determine the minimum number of markers from the BovineSNP50 BeadChip required to verify the origin of individuals in European cattle breeds. Delta, Wright's FST, Weir & Cockerham's FST and PCA methods for population differentiation were compared. The level of informativeness of each SNP was estimated from the breed specific allele frequencies. Individual assignment analysis was performed using the ranked informative markers. Stringency levels were applied by log-likelihood ratio to assess the confidence of the assignment test. RESULTS: A 95% assignment success rate for the 384 individually genotyped animals was achieved with <80, <100, <140 and <200 SNP markers (with increasing stringency threshold levels) across all the examined methods for marker selection. No further gain in power of assignment was achieved by sampling in excess of 200 SNP markers. The marker selection method that required the lowest number of SNP markers to verify the animal's breed origin was Wright's FST (60 to 140 SNPs depending on the chosen degree of confidence). Certain breeds required fewer markers (<100) to achieve 100% assignment success. In contrast, closely related breeds require more markers (~200) to achieve>95% assignment success. The power of assignment success, and therefore the number of SNP markers required, is dependent on the levels of genetic heterogeneity and pool of samples considered. CONCLUSIONS: While all SNP selection methods produced marker panels capable of breed identification, the power of assignment varied markedly among analysis methods. Thus, with effective exploration of available high density genetic markers, a diagnostic panel of highly informative markers can be produced.


Assuntos
Sistemas de Identificação Animal/métodos , Bovinos/genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Animais , Frequência do Gene , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...