Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Rehabil Sci ; 3: 789333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188913

RESUMO

The goal of this study was to examine and compare the step cycle related modulation of the soleus H and posterior root muscle (PRM) reflexes in subjects with and without spinal cord injury. Ten subjects without neurological injury and fifteen subjects with spinal cord injury (SCI) underwent soleus H reflex and lower limb PRM reflex testing while standing and stepping in a robotic gait orthosis. Reflex amplitudes were evaluated during standing, mid stance and mid swing to determine if speed and/or injury altered step cycle related neuromodulation. H and PRM reflexes in the soleus underwent step cycle related modulation in injured and uninjured subjects though the degree of modulation differed between the two reflexes with the H reflex showing more step cycle related modulation. We found in the SCI group that both the soleus H and soleus PRM reflex amplitudes were higher relative to the non-injured group and modulated less during the step cycle. We also found that modulation of the soleus H reflex, but not soleus PRM reflex, correlated to the lower extremity motor scores in individuals with SCI. Our evidence suggests that the inability to provide appropriate step cycle related reflex modulation may be due to decreased supra-spinal regulation of motoneuron and spinal excitability and could be an indicator of the severity of injury as it relates to clinically measured lower extremity motor scores.

2.
Respir Physiol Neurobiol ; 259: 143-148, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227268

RESUMO

Maximum inspiratory and expiratory pressure values (PImax and PEmax) are indirect measures of respiratory muscle strength that, in healthy adults, are known to be significantly lower in women compared to men. In part, sex differences in breathing kinematics, lung size, body composition, muscle mass, and muscle fiber composition are thought to be responsible for these effects. However, it is not known whether respiratory muscle activation during maximum respiratory efforts is also sex-specific. In this study, we addressed whether respiratory multi-muscle activation patterns during PImax and PEmax efforts are different between healthy women and men. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), PImax, PEmax, and surface electromyographic (sEMG) activity recorded from respiratory muscles during these maximum airway pressure efforts were obtained in 13 women and 11 men. Percent predicted values of FVC and FEV1 were not significantly different in these two groups (women vs. men: 112 ± 14 vs. 105 ± 15%, p = 0.29; and 92 ± 12 vs. 93 ± 13, p = 0.82, Mean ± SD, respectively), while PImax and PEmax measures were significantly lower in women compared to men (68 ± 16 vs. 88 ± 19 cmH2O, p = 0.011; and 69 ± 13 vs. 94 ± 17, p = 0.0004, respectively). Using vector-based methodology, by calculating the Similarity Index (SI) as measure of the resemblance between two sEMG patterns and the Magnitude (Mag) representing the overall amount sEMG during motor task, we have found that although the Mag values for both PImax and PEmax tasks were not significantly different in two groups, the SIs revealed significant sex-dependent differences in muscle activation patterns (0.89 ± 0.08 vs. 0.97 ± 0.02, p = 0.016; and 0.77 ± 0.11 vs. 0.92 ± 0.04, p = 0.0006, respectively). During the PImax effort, presented as the percentage of total sEMG amplitude, activity of upper trapezius muscle was significantly larger (p = 0.001) while activation of rectus abdominus, oblique, and lower paraspinal muscles were significantly smaller (p = 0.002, p = 0.040, p = 0.005, respectively) in women when compared to the men (50 ± 21 vs. 22 ± 11%; 2 ± 2 vs. 8 ± 7; 4 ± 3 vs. 9 ± 7, 2 ± 3 vs. 7 ± 6, respectively). During PEmax effort, the percentage of sEMG activity were significantly larger in upper and lower trapezius, and intercostal muscles (p = 0.038, p = 0.049, p = 0.037, respectively) and were significantly smaller in pectoralis, rectus abdominus, and oblique muscles (p = 0.021, p < 0.0001, p = 0.048, respectively) in women compared to men (16 ± 10 vs. 9 ± 4%; 16 ± 9 vs. 8 ± 5; 36 ± 12 vs. 25 ± 9; 6 ± 3 vs. 15 ± 5; 14 ± 5 vs. 20 ± 7, respectively). These findings indicate that respiratory muscle activation patterns during maximum airway pressure efforts in healthy individuals are sex-specific. This information should be considered during respiratory motor control evaluation and treatment planning for people with compromised respiratory motor function.


Assuntos
Volume Expiratório Forçado/fisiologia , Força Muscular/fisiologia , Músculos Respiratórios/fisiologia , Caracteres Sexuais , Capacidade Vital/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Pressões Respiratórias Máximas , Pessoa de Meia-Idade , Adulto Jovem
3.
Artif Organs ; 39(10): E176-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26450344

RESUMO

The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.


Assuntos
Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Marcha/fisiologia , Humanos , Região Lombossacral , Masculino , Músculo Esquelético/fisiopatologia , Medula Espinal/fisiopatologia
4.
Respir Physiol Neurobiol ; 203: 9-14, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25169115

RESUMO

This case-controlled clinical study was undertaken to investigate to what extent pulmonary function in individuals with chronic spinal cord injury (SCI) is affected by posture. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax) were obtained from 27 individuals with chronic motor-complete (n=13, complete group) and motor-incomplete (n=14, incomplete group) C2-T12 SCI in both seated and supine positions. Seated-to-supine changes in spirometrical (FVC and FEV1) and airway pressure (PImax and PEmax) outcome measures had different dynamics when compared in complete and incomplete groups. Patients with motor-complete SCI had tendency to increase spirometrical outcomes in supine position showing significant increase in FVC (p=.007), whereas patients in incomplete group exhibited decrease in these values with significant decreases in FEV1 (p=.002). At the same time, the airway pressure values were decreased in supine position in both groups with significant decrease in PEmax (p=.031) in complete group and significant decrease in PImax (p=.042) in incomplete group. In addition, seated-to-supine percent change of PImax was strongly correlated with neurological level of motor-complete SCI (ρ=-.77, p=.002). These results indicate that postural effects on respiratory performance in patients with SCI can depend on severity and neurological level of SCI, and that these effects differ depending on respiratory tasks. Further studies with adequate sample size are needed to investigate these effects in clinically specific groups and to study the mechanisms of such effects on specific respiratory outcome measures.


Assuntos
Atividade Motora/fisiologia , Postura/fisiologia , Respiração , Traumatismos da Medula Espinal/complicações , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Testes de Função Respiratória , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo , Capacidade Vital/fisiologia , Adulto Jovem
5.
J Spinal Cord Med ; 37(2): 202-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24090290

RESUMO

CONTEXT/OBJECTIVE: To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. DESIGN: Interventional pilot study to produce preliminary data. SETTING: Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. PARTICIPANTS: Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. INTERVENTIONS: Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. OUTCOME MEASURES: The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. RESULTS: The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. CONCLUSION: These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted.


Assuntos
Espasticidade Muscular/terapia , Traumatismos da Medula Espinal/terapia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Feminino , Humanos , Extremidade Inferior/inervação , Extremidade Inferior/fisiopatologia , Masculino , Projetos Piloto , Traumatismos da Medula Espinal/fisiopatologia
6.
Front Neurol ; 4: 174, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223568

RESUMO

STUDY DESIGN: Prospective cohort study. OBJECTIVE: This study examined the relationship between motor control and clinical function outcomes after spinal cord injury (SCI). SETTING: University of Louisville, Louisville, KY, USA. MATERIALS: Eleven persons with SCI and 5 non-injured subjects were included in this study. METHODS: The ASIA Impairment Scale (AIS) was used to categorize injury level and severity. Multi-muscle, surface EMG (sEMG) recording, was carried out using a protocol of reflex and volitional motor tasks and was analyzed using a vector-based tool that calculates index values that relate a distribution of multi-muscle activation pattern of each SCI subject to the prototype obtained from non-injured subject group and presents overall magnitude as a separate value. Functional Independence Measure motor sub-scale, Spinal Cord Injury Independence Measure (SCIM-III), and Walking Index for Spinal Cord Injury (WISCI) scale scores were compared to neurophysiological parameters. RESULTS: AIS category and injury level correlated significantly with the WISCI and SCIM mobility sub-scales. sEMG-derived parameters were significantly correlated with SCIM and WISCI scores but only for examinations carried out 48 or more days post-injury. CONCLUSION: These results supported the hypothesis that clinically relevant function after SCI is related to the degree to which functional organization within the central nervous system is disrupted. Further, due likely to the constraints placed on the expression of functional ability by early post-injury immobilization and hospitalization, neurophysiological assessment of motor function may provide better sensitivity and reliability than can be obtained using the clinical function scales examined here within the early period after injury.

7.
J Vis Exp ; (77)2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23912611

RESUMO

During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax). These values provide indirect measurements of respiratory muscle performance(6). In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles, known as the voluntary response index (VRI), we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA). This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity. We showed previously that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.


Assuntos
Eletromiografia/instrumentação , Eletromiografia/métodos , Músculos Respiratórios/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Algoritmos , Humanos , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Músculos Respiratórios/inervação
8.
Transl Stroke Res ; 2(4): 463-73, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22408690

RESUMO

Pulmonary complications associated with persistent respiratory muscle weakness, paralysis, and spasticity are among the most important problems faced by patients with spinal cord injury when lack of muscle strength and disorganization of reciprocal respiratory muscle control lead to breathing insufficiency. This review describes the mechanisms of the respiratory motor control and its change in individuals with spinal cord injury, methods by which respiratory function is measured, and rehabilitative treatment used to restore respiratory function in those who have experienced such injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA