Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(38): e202305759, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338105

RESUMO

Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.


Assuntos
Química Click , Cobre , Cobre/química , Leucócitos Mononucleares/metabolismo , Ligantes , DNA/química , Azidas/química
2.
Chemistry ; 29(24): e202300239, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36802283

RESUMO

BODIPY heterochromophores, asymmetrically substituted with perylene and/or iodine at the 2 and 6 positions were prepared and investigated as sensitizers for triplet-triplet annihilation up conversion (TTA-UC). Single-crystal X-ray crystallographic analyses show that the torsion angle between BODIPY and perylene units lie between 73.54 and 74.51, though they are not orthogonal. Both compounds show intense, charge transfer absorption and emission profiles, confirmed by resonance Raman spectroscopy and consistent with DFT calculations. The emission quantum yield was solvent dependent but the emission profile remained characteristic of CT transition across all solvents explored. Both BODIPY derivatives were found to be effective sensitizers of TTA-UC with perylene annihilator in dioxane and DMSO. Intense anti-Stokes emission was observed, and visible by eye from these solvents. Conversely, no TTA-UC was observed from the other solvents explored, including from non-polar solvents such as toluene and hexane that yielded brightest fluorescence from the BODIPY derivatives. In dioxane, the power density plots obtained were strongly consistent with TTA-UC and the power density threshold, the Ith value (the photon flux at which 50 % of ΦTTAUC is achieved), for B2PI was observed to be 2.5x lower than of B2P under optimal conditions, an effect ascribed to the combined influence of spin-orbit charge transfer intersystem crossing (SOCT-ISC) and heavy metal on the triplet state formation for B2PI.

3.
J Inorg Biochem ; 241: 112121, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696836

RESUMO

Five ternary copper(II) complexes, [Cu2(phen)2(L1)(ClO4)2] (1), [Cu2(phen)2(L1)(DMSO)2](PF6)2 (2), [Cu2(bpy)2(L1)(ClO4)2(H2O)2] (3), [Cu2(dmp)2(L1)(ClO4)2(H2O)2] (4), and [Cu(phen)(L2)]2(ClO4)2 (5), in which phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine, dmp = 2,9-dimethyl-1,10-phenanthroline, H2L1 = 1,4-dihydroxyanthracene-9,10-dione and HL2 = 1-hydroxyanthracene-9,10-dione, DMSO = dimethylsulfoxide, were synthesized and fully characterized. Complex 2 was obtained through the substitution of perchlorate for DMSO. When two hydroxyquinone groups are present, L1 makes a bridge between two Cu(II) ions, which also bind two nitrogens of the respective diimine ligand. The compounds bind to calf thymus DNA and oxidatively cleave pUC19 DNA according to the following order of activity 1 > 4-5 > 3. Furthermore, complexes 1, 3, 4 and 5 inhibit topoisomerase-I activity and the growth of myelogenous leukemia cells with the IC50 values of 1.13, 10.60, 0.078, and 1.84 µmol L-1, respectively. Complexes 1 and 4 are the most active in cancer cells and in DNA cleavage.


Assuntos
Cobre , Compostos Heterocíclicos , Cobre/farmacologia , Ligantes , Dimetil Sulfóxido , Ligação Proteica , Cristalografia por Raios X
4.
RSC Adv ; 12(10): 5772-5781, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424558

RESUMO

The antimony(iii) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed. The Sb(iii) ion in Na[Sb(DOTA)]·4H2O shows an approximately square antiprismatic coordination geometry that is close to superimposable to the Bi(iii) geometry in [Bi(DOTA)]- in two phases containing this anion, Na[Bi(DOTA)]·4H2O, [H3O][Bi(DOTA)]·H2O for which structures are also described. Interestingly, DOTA itself in [(H6DOTA)]Cl2·4H2O·DMSO shows the same orientation of the N4O4 metal binding cavity reflecting the limited flexibility of DOTA in an octadentate coordination mode. In 8-coordinate complexes it can however accommodate M(iii) ions with r ion spanning a relatively wide range from 87 pm (Sc(iii)) to 117 pm (Bi(iii)). The larger Bi3+ ion appears to be the best metal-ligand size match since [Bi(DOTA)]- is associated with greater complex stability. In the solution state, [Sb(DOTA)]- is extremely susceptible to transmetallation by trivalent ions (Sc(iii), Y(iii), Bi(iii)) and, significantly, even by biologically important divalent metal ions (Mg(ii), Ca(ii), Zn(ii)). In all cases just one equivalent is enough to displace most of the Sb(iii). [Sb(DOTA)]- is resistant to hydrolysis; however, since biologically more abundant metal ions easily substitute the antimony, DOTA complexes will not be suitable for deployment for the delivery of the, so far unexploited, theranostic isotope pair 119Sb and 117Sb.

5.
Dalton Trans ; 50(11): 3979-3989, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33646221

RESUMO

Controlled bottom-up synthesis of amorphous coordination polymers with tailored metal coordination is a research field in its infancy. In this study, synthesis control was achieved to selectively prepare one-dimensional (1D) crystalline and amorphous zinc(ii)-based coordination polymers and a dimeric molecular compound, all with similar coordination geometry as evidenced by X-ray diffraction and total scattering studies. The compounds were obtained by bottom up self-assembly of Zn(ii) with terephthalate (tph2-) as linker and the enantiopure chelating ligand S-(1,2)-bis(1H-benzimidazol-2-yl)ethanol (L). The solvent and the coordination ability of the precursor zinc salt anion control the crystalline products formed by slow diffusion at room temperature: perchlorate allows isolation of the phase pure crystalline 1D polymer {[Zn(tph)(L)]·H2O·3DMF}n (1·H2O·3DMF, DMF = N,N-dimethylformamide). In contrast, zinc chloride leads to the formation of either a mixture of polymeric 1·H2O·3DMF and a dimeric molecular species [Zn2Cl2(tph)(L)2]·4DMF (2·4DMF), or to the phase pure dimer 2·4DMF, depending on the Zn(ii) : tphH2 stoichiometry. A modified synthesis using zinc nitrate and fast precipitation by base addition results in an amorphous analogue of the 1D polymer (3). Chains of 1·H2O·3DMF pack into a non-porous crystalline material with a surface area of just 6 m2 g-1, while the outer surface area of amorphous polymer 3 is a factor of eight larger. Hence, the amorphous compound provides larger metal site accessibility for potential surface chemical reactions, while maintaining the coordination geometry of the metal sites. The temperature response of crystalline polymer 1·H2O·3DMF was studied using multi-temperature single crystal X-ray diffraction (100-300 K). The a = b axes display normal positive thermal expansion, while the c axis remains constant with increasing temperature due to partial relaxation of the terephthalate linkers and slightly changed geometry within the individual polymer chains.

6.
Acta Crystallogr C Struct Chem ; 77(Pt 2): 100-110, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536373

RESUMO

In this work, a series of seven MnII complexes of noncyclic flexible ligands derived from 2,6-diformylpyridine and ethanolamine or alkyl-substituted ethanolamines were prepared and characterized, six structurally by single-crystal X-ray diffraction studies. The complexes are dichlorido{2,2'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]diethanol}manganese(II), [MnCl2(C11H15N3O2)] or [MnCl2(L1)], (2), bis{µ-2,2'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]diethanol}bis[dithiocyanatomanganese(II)], [Mn2(NCS)4(C11H15N3O2)2] or [Mn2(NCS)4(L1)2], (3), chlorido{1,1'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-2-ol)}manganese(II) chloride monohydrate, [MnCl(C13H19N3O2)(H2O)]Cl·H2O or [MnCl(L2)(H2O)]Cl·H2O, (4), {1,1'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-2-ol)}dithiocyanatomanganese(II), [Mn(NCS)2(C13H19N3O2)] or [Mn(NCS)2(L2)], (5), aquadichlorido{2,2'-dimethyl-2,2'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-1-ol)}manganese(II) 0.3-hydrate, [MnCl2(C15H23N3O2)(H2O)]·0.3H2O or [MnCl2(L3)(H2O)]·0.3H2O, (6), (dimethylformamide){2,2'-dimethyl-2,2'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(propan-1-ol)}dithiocyanatomanganese(II), [Mn(NCS)2(C15H23N3O2)(C3H7NO)] or [Mn(NCS)2(L3)(DMF)], (7), and (dimethylformamide){2,2'-[(pyridine-2,6-diyl)bis(nitrilomethanylylidene)]bis(butan-1-ol)}dithiocyanatomanganese(II) dimethylformamide monosolvate, [Mn(NCS)2(C15H23N3O2)(C3H7NO)]·C3H7NO or [Mn(NCS)2(L4)(DMF)]·DMF, (8). The crystal structure of ligand L1 is also reported, but that of (5) is not. All four ligands (L1-L4) have five potential donor atoms in an N3O2 donor set, i.e. three N (pyridine/diimine donors) and two alcohol O atoms, to coordinate the MnII centre. The N3O2 donor set coordinates to the metal centre in a pentagonal planar arrangement; seven-coordinated MnII complexes were obtained via coordination of two auxiliary ligands (anions or water molecules) at the axial positions. However, in some cases, the alcohol O-atom donors remain uncoordinated, resulting in five- or six-coordinated MnII complexes. The structurally characterized complexes were tested for their catalytic scavenging of superoxide and peroxide. The results indicated that the complexes with coordinated exogenous water or chloride ligands showed higher SOD activity than those with exogenous thiocyanate ligands.


Assuntos
Catalase/química , Manganês/química , Piridinas/química , Superóxido Dismutase/química , Catálise , Cristalografia por Raios X , Ligação de Hidrogênio , Íons , Ligantes
7.
Chemistry ; 27(3): 971-983, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32519773

RESUMO

We report a series of copper(II) artificial metallo-nucleases (AMNs) and demonstrate their DNA damaging properties and in-vitro cytotoxicity against human-derived pancreatic cancer cells. The compounds combine a tris-chelating polypyridyl ligand, di-(2-pycolyl)amine (DPA), and a DNA intercalating phenanthrene unit. Their general formula is Cu-DPA-N,N' (where N,N'=1,10-phenanthroline (Phen), dipyridoquinoxaline (DPQ) or dipyridophenazine (DPPZ)). Characterisation was achieved by X-ray crystallography and continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE) and Davies electron-nuclear double resonance (ENDOR) spectroscopies. The presence of the DPA ligand enhances solution stability and facilitates enhanced DNA recognition with apparent binding constants (Kapp ) rising from 105 to 107 m-1 with increasing extent of planar phenanthrene. Cu-DPA-DPPZ, the complex with greatest DNA binding and intercalation effects, recognises the minor groove of guanine-cytosine (G-C) rich sequences. Oxidative DNA damage also occurs in the minor groove and can be inhibited by superoxide and hydroxyl radical trapping agents. The complexes, particularly Cu-DPA-DPPZ, display promising anticancer activity against human pancreatic tumour cells with in-vitro results surpassing the clinical platinum(II) drug oxaliplatin.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , DNA/análise , DNA/química , Fenantrenos/química , Fenantrenos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Dano ao DNA/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Neoplasias Pancreáticas/genética , Fenantrolinas/química
8.
Chembiochem ; 21(24): 3563-3574, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755000

RESUMO

In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.


Assuntos
Cobre/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Metaloproteínas/metabolismo , Oligonucleotídeos/metabolismo , Química Click , Cobre/química , DNA/química , Metaloproteínas/síntese química , Metaloproteínas/química , Estrutura Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química
9.
Chemistry ; 26(70): 16782-16792, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706904

RESUMO

Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene-targeted technology. Azide-bearing phenanthrene ligands-designed to promote triplex stability and copper binding-were 'clicked' to alkyne-modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine-rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and 'clicked' ligands work synergistically to provide sequence-selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry-based di-copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.


Assuntos
Química Click , DNA/química , Marcação de Genes/métodos , Oligonucleotídeos/química , Cobre/química , Dano ao DNA , Ligantes , Conformação de Ácido Nucleico , Oxirredução
10.
Nanoscale ; 12(21): 11601-11611, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32432631

RESUMO

A series of semicrystalline and amorphous one-dimensional (1D) polymeric chains consisting of cubane-like CoII4L4 units (L = S-1,2-bis(benzimidazol-2-yl)ethanol) and dicarboxylates were synthesized and characterized by single crystal diffraction and X-ray total scattering. The polycationic chains are composed of [Co4L4(dicarboxylate)]2+ monomeric units, while one molecular dicarboxylate counterion is balancing the charge of each monomer. The linear compound series has five members, and the crystal structures were solved for [Co4L4(tph)](tph) and [Co4L4(ndc)](ndc), where tph = terephthalate and ndc = 2,6-naphthalenedicarboxylate. Partly crystalline compounds were produced by slow assembly at elevated temperature (over days), while the amorphous compounds were formed by fast precipitation (within minutes). Pair distribution function (PDF) analysis based on X-ray total scattering data reveals the presence of the cubane-like entity in both the amorphous and semicrystalline samples. While the powders are non-porous, precipitation is a fast and versatile method to produce compounds with cubane-like centres with moderate surface areas of 17-49 m2 g-1 allowing for surface chemical reactions. The powders have a high concentration of Lewis base sites as verified by their selective adsorption of CO2 over N2. The use of an amorphous cubane-like polymer for the electrocatalytic oxygen evolution reaction was demonstrated.

11.
Phys Chem Chem Phys ; 22(15): 8048-8059, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239061

RESUMO

13C solid-state MAS NMR spectra of a series of paramagnetic metal acetylacetonate complexes; [VO(acac)2] (d1, S = ½), [V(acac)3] (d2, S = 1), [Ni(acac)2(H2O)2] (d8, S = 1), and [Cu(acac)2] (d9, S = ½), were assigned using modern NMR shielding calculations. This provided a reliable assignment of the chemical shifts and a qualitative insight into the hyperfine couplings. Our results show a reversal of the isotropic 13C shifts, δiso(13C), for CH3 and CO between the d1 and d2versus the d8 and d9 acetylacetonate complexes. The CH3 shifts change from about -150 ppm (d1,2) to roughly 1000 ppm (d8,9), whereas the CO shifts decrease from 800 ppm to about 150 ppm for d1,2 and d8,9, respectively. This was rationalized by comparison of total spin-density plots and computed contact couplings to those corresponding to singly occupied molecular orbitals (SOMOs). This revealed the interplay between spin delocalization of the SOMOs and spin polarization of the lower-energy MOs, influenced by both the molecular symmetry and the d-electron configuration. A large positive chemical shift results from spin delocalization and spin polarization acting in the same direction, whereas their cancellation corresponds to a small shift. The SOMO(s) for the d8 and d9 complexes are σ-like, implying spin-delocalization on the CH3 and CO groups of the acac ligand, cancelled only for CO by spin polarization. In contrast, the SOMOs of the d1 and d2 systems are π-like and a large CO-shift results from spin polarization, which accounts for the reversed assignment of δiso(13C) for CH3 and CO.

12.
Bioorg Med Chem Lett ; 30(10): 127107, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216991

RESUMO

The steady rise of the antimicrobial resistance is a major global threat to human health that requires the urgent need for novel antibiotics. In this work we report the synthesis of a small library of 3-subsituted-5-arylidene tetramic acids in order to investigate the scope of our previously established methodology via an intermediate oxazolone and their antimicrobial activity. From this series of 14 tetramic acids, 11 derivatives are novel and one of them is a Schiff base, which was structurally characterized with single-crystal X-ray analysis and NMR spectroscopy. The compounds incorporating a lipophilic acyl group at carbon-3 of the ring showed moderate to high activity with minimum inhibitory activity of 4-32 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA), accompanied by no human cell toxicity and hemolytic activity within the tested concentration range. The substituent at para position of the aryl ring seemed to have no or little effect on the antimicrobial activity of these compounds.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirrolidinonas/química , Antibacterianos/síntese química , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Pirrolidinonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
13.
J Biomol Struct Dyn ; 38(6): 1670-1682, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31074356

RESUMO

In search of achieving less toxic and more potent chemotherapeutics, three novel heterocyclic benzimidazole derivatives: 2-(1H-benzo[d]imidazol-2-yl)-4-chlorophenol (BM1), 4-chloro-2-(6-methyl-1H-benzo[d]imidazol-2-yl)phenol (BM2) and 4-chloro-2-(6-nitro-1H-benzo[d]imidazol-2-yl)phenol (BM3) with DNA-targeting properties, were synthesized and fully characterized by important physicochemical techniques. The DNA binding properties of the compounds were investigated by UV-Visible absorption titrations and thermal denaturation experiments. These molecules exhibited a good binding propensity to fish sperm DNA (FS-DNA), as evident from the high binding constants (Kb) values: 1.9 × 105, 1.39 × 105 and 1.8 × 104 M‒1 for BM1, BM2 and BM3, respectively. Thermal melting studies of DNA further validated the absorption titration results and best interaction was manifested by BM1 with ΔTm = 4.96 °C. The experimental DNA binding results were further validated theoretically by molecular docking study. It was confirmed that the molecules (BM1-BM3) bind to DNA via an intercalative and groove binding mode. The investigations showed a correlation between binding constants and energies obtained experimentally and through molecular docking, indicating a binding preference of benzimidazole derivatives with the minor groove of DNA. BM1 was the preferential candidate for DNA binding because of its flat structure, π-π interactions and less steric hindrance. To complement the DNA interaction, antimicrobial assays (antibacterial & antifungal) were performed. It was observed that compound BM2 showed promising activity against all bacterial strains (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes and Escherichia coli) and fungi (Aspergillus flavus, Aspergillus fumigatus and Fusarium solani), while rest of the compounds were active against selective strains. The MIC values of BM2 were found to be in the range of 12.5 ± 2.2-25 ± 1.5 µg/mL. Thus, the compound BM2 was found to be the effective DNA binding antimicrobial agent. Furthermore, the preliminary cytotoxic properties of synthesized compounds were evaluated by brine shrimps lethality assay to check their nontoxic nature towards healthy normal cells.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzimidazóis/farmacologia , Fusarium , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
14.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779066

RESUMO

Herein, we report the synthesis, characterisation, X-ray crystallography, and oxidative DNA binding interactions of the copper artificial metallo-nuclease [Cu(DPQ)2(NO3)](NO3), where DPQ = dipyrido[3,2-f:2',3'-h]quinoxaline. The cation [Cu(DPQ)2]2+ (Cu-DPQ), is a high-affinity binder of duplex DNA and presents an intercalative profile in topoisomerase unwinding and viscosity experiments. Artificial metallo-nuclease activity occurs in the absence of exogenous reductant but is greatly enhanced by the presence of the reductant Na-L-ascorbate. Mechanistically, oxidative DNA damage occurs in the minor groove, is mediated aerobically by the Cu(I) complex and is dependent on both superoxide and hydroxyl radical generation. To corroborate cleavage at the minor groove, DNA oxidation of a cytosine-guanine (5'-CCGG-3')-rich oligomer was examined in tandem with a 5-methylcytosine (5'-C5mCGG-3') derivative where 5mC served to sterically block the major groove and direct damage to the minor groove. Overall, both the DNA binding affinity and cleavage mechanism of Cu-DPQ depart from Sigman's reagent [Cu(1,10-phenanthroline)2]2+; however, both complexes are potent oxidants of the minor groove.


Assuntos
Cobre/farmacologia , Clivagem do DNA/efeitos dos fármacos , DNA/metabolismo , Desoxirribonucleases/metabolismo , Compostos Organometálicos/farmacologia , Quinoxalinas/farmacologia , Superóxidos/metabolismo , Cristalografia por Raios X/métodos , Citosina/metabolismo , Dano ao DNA/efeitos dos fármacos , Guanina/metabolismo , Radical Hidroxila/metabolismo , Substâncias Intercalantes/farmacologia , Oxirredução/efeitos dos fármacos
15.
Chem Commun (Camb) ; 55(90): 13558-13561, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31650999

RESUMO

When InBr3-EtAlCl2 (15-30 mol%) was used as a dual Lewis acid system to promote the formal [3+2]-cycloaddition of enantioenriched donor-acceptor cyclopropanes with ketenes, cyclopentanones were formed in good to excellent yields (84-99%, 18 examples), and with excellent transfer of chirality (15 examples, 90% ee to >99% ee).

16.
Chem Commun (Camb) ; 55(71): 10551-10554, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31414677

RESUMO

A bridging nitrite and a nitrate counter anion per Co2 site are generated in-crystal and an arylamine group on the ligand scaffold is oxidised to a nitro group when nitric oxide (NO) is chemisorbed by molecular crystals of cobalt complexes.

17.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 8): 1224-1227, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31417796

RESUMO

Phenanthroline ligands are important metal-binding mol-ecules which have been extensively researched for applications in both material science and medicinal chemistry. Azo-benzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as mol-ecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3.

18.
J Org Chem ; 84(18): 11983-11991, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31419134

RESUMO

In this article we describe a new asymmetric synthesis of highly substituted tetrahydrofurans through a Pd(PPh3)4-catalyzed formal [3 + 2]-cycloaddition of donor-acceptor cyclopropanes and ketenes. The desired structural motif was formed in moderate to excellent yields (42-84% for 16 examples), with excellent Z:E isomer diastereoselectivity (≥19:1 for 16 examples), and with good to excellent enantioselectivity in all cases examined (83-97% ee for 6 examples). The synthetic utility of the products was illustrated by a number of diastereoselective transformations into reduced tetrahydrofurans and spirocyclic tetrahydrofuran-barbiturate derivatives.

19.
J Photochem Photobiol B ; 197: 111516, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31170508

RESUMO

In the search for new therapeutic agents we have synthesized 13 new organotin(IV) carboxylate derivatives of (E)-4-((4-methoxy-2-nitrophenyl)amino)-4-oxobut-2-enoic acid. The synthesized complexes were characterized by several spectroscopic techniques. A chelating or bridging bidentate nature of the carboxylate ligand was suggested from the solid state FT-IR results. Solution state multinuclear NMR (1H, 13C and 119Sn) results reveal that the geometry around the Sn atom in triorganotin(IV) complexes is trigonal bipyramidal and in diorganotin(IV) complexes is octahedral. The ligand, (E)-4-((4-methoxy-2-nitrophenyl)amino)-4-oxobut-2-enoic acid, complex 1 and complex 2 were also analyzed by single crystal X-ray technique and the results fully supports the spectroscopic data. For 1 and 2 the geometry optimized by the single crystal X-ray analyses is distorted trigonal bipyramidal. The interaction of the studied compounds with SS-DNA was investigated by UV-Vis. Spectroscopy and Molecular docking showing an intercalative mode of binding. The evaluation of the screened compounds for cancer treatment displays even higher than that of the vincristine used as a standard drug. Similarly the performance of the tested compounds as an antileishmanial agent considers them very close in activity to the standard drug, amphotericin B. The antibacterial results show that the most of the compounds have a moderate sensitivity against the studied bacterial pathogens.


Assuntos
Complexos de Coordenação/química , Compostos Orgânicos de Estanho/química , Sítios de Ligação , Ácidos Carboxílicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Leishmania tropica/efeitos dos fármacos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Inorg Biochem ; 194: 65-73, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30831391

RESUMO

This study aims at the further expansion of knowledge on the antimicrobial activities of the tetramic acid moiety and the effect of metal complexation. Complexes of the N-acetyl-3-acetyl-5-benzylidenetetramic acid with Mn, Co, Ni, Cu, Zn and Cd were synthesized and screened against 5 key ESKAPE pathogens (Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) and 2 fungi (Cryptococcus neoformans and Candida albicans). The cadmium complex was found to effectively inhibit the fungus Cryptococcus neoformans with minimum inhibitory concentration (MIC) of 8 µg/mL, with no human cell toxicity and hemolytic activity within the tested concentration range. The biologically active tetramic acid­cadmium complex was structurally characterized by single-crystal X-ray analysis. Furthermore, the thermal stability of the ligand and the complexes was investigated along with NMR and EPR studies of the Cd(II) and Co(II) complexes respectively.


Assuntos
Antifúngicos/farmacologia , Complexos de Coordenação/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Bactérias/efeitos dos fármacos , Cádmio/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Eritrócitos/efeitos dos fármacos , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...