Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(44): 18219-18227, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37877669

RESUMO

The tetradentate tripodal ligand scaffold is capable of supporting the expected geometries of the copper ion during the oxygen reduction reaction (ORR) catalysis. As such, we probed the reactivity of copper complexes with these types of ligands by electronically and structurally tweaking the tris(pyridin 2-ylmethyl)amine (tmpa) scaffold by progressively replacing the terminal pyridines with carboxylate donors. This work shows that systems with one carboxylato donor (bpg = bis(pyridin-2-ylmethyl)glycine), (bpp = (3-(bis(pyridin-2-ylmethyl)amino)propanoic acid)) are active in electrocatalyzing the homogeneous ORR under circumneutral aqueous conditions. Turnover frequencies in the range from 105 to 106 s-1, on par with that for Cu-tmpa under identical conditions, were obtained. It is noteworthy that the CuII/CuI redox potentials for the Cu-bpg, Cu-bpp, and Cu-tmpa systems in phosphate-buffered water (pH 7, under Ar) are similar at -0.409, -0.375, and -0.401 V vs Ag/AgCl, respectively. This is rationalized by the influence of the Lewis acidity of the copper ions on the water coligand. Corroborating this are pKa values for [Cu(tmpa)(H2O)]2+, Cu(bpg)(H2O)]+, and [Cu(bpp)(H2O)]+ of 6.6, 8.8, and 10.2, respectively. Thus, the overall charge of the solution species for all three complexes will be +1 at pH 7 and this will be an important determinant for the redox potentials and, in turn, the catalytic overpotentials, which are also similar. A cis carboxylato donor offers H-bonding possibilities for exogenous resting state water and intermediate hydroperoxo coligands. This is reflected by the higher pKa values for Cu-bpp and Cu-bpg compared with that for Cu-tmpa, with the Cu-bpp system furnishing the least strained H-bonding.

2.
Inorg Chem ; 62(32): 12741-12749, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37535840

RESUMO

Heteroleptic copper complexes of an asymmetrical pincer ligand containing a central anionic sulfonamide donor (pyridine-2-yl-sulfonyl)(quinolin-8-yl)-amide (psq), which contains a central anionic sulfonamido donor have been prepared. Meridional κ3-N,N″,N‴ binding with the co-ligands acetate, chloride, or acetonitrile (MeCN), trans to the central sulfonamido N-donor, is revealed by the X-ray crystal structures of [Cu(OAc)(psq)(H2O)], [CuCl(psq)]2, and [Cu(psq)(MeCN)](PF6). Either overall distorted square pyramidal or octahedral geometries of the copper atom are satisfied by coordinated water in the case of the acetate complex or interactions with periphery sulfonamido oxygen atoms on adjacent molecules in the dimeric chloride and 1D polymeric acetonitrile complexes. The cyclic voltammogram (CV) of [Cu(OAc)(psq)(H2O)] shows a quasi-reversible CuII/CuI reduction at -0.930 V (vs Fc+/Fc0, MeCN), and an irreversible CuII/CuI reduction for [Cu(psq)(MeCN)](PF6) is seen at -0.838 V. This signal is split into two quasi-reversible redox processes on the addition of 2,2,2-trifluoroethanol (TFE). This suggests that TFE pushes a solution equilibrium toward a dimeric acetate complex analogous to [CuCl(psq)]2, which shows two quasi-reversible waves at -0.666 V and -0.904 V vs Fc+/Fc0 consistent with its dimeric solid-state structure. A comparison of the CVs of [Cu(OAc)(psq)(H2O)] under either a N2 or an O2 atmosphere revealed that this complex catalyzes turnover electro-reduction of O2 to H2O2 and H2O. The rate of reaction increases on addition of a weak organic acid, and a coulombic efficiency of 48% for H2O2 was determined by iodometric titration. We propose that a CuI complex formed on electroreduction binds O2 to yield an intermediate superoxide complex. On electron and proton transfer to this species, a bifurcated route back to the O2-activating CuI complex is feasible with either release of H2O2 or O-O cleavage resulting in the liberation of H2O. The CuI complex is regenerated by subsequent reduction and protonation to close the cycle.

3.
Angew Chem Int Ed Engl ; 62(38): e202305759, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338105

RESUMO

Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.


Assuntos
Química Click , Cobre , Cobre/química , Leucócitos Mononucleares/metabolismo , Ligantes , DNA/química , Azidas/química
4.
JACS Au ; 3(5): 1484-1495, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234105

RESUMO

The potential of solid-state materials comprising Co(salen) units for concentrating dioxygen from air was recognized over 80 years ago. While the chemisorptive mechanism at the molecular level is largely understood, the bulk crystalline phase plays important, yet unidentified roles. We have reverse crystal-engineered these materials and can for the first time describe the nanostructuring requisite for achieving reversible O2 chemisorption by Co(3R-salen) R = H or F, the simplest and most effective of the many known derivatives of Co(salen). Of the six phases of Co(salen) identified, α-ζ: α = ESACIO, ß = VEXLIU, γ, δ, ε, and ζ (this work), only γ, δ, ε, and ζ are capable of reversible O2 binding. Class I materials (phases γ, δ, and ε) are obtained by desorption (40-80 °C, atmospheric pressure) of the co-crystallized solvent from Co(salen)·(solv), solv = CHCl3, CH2Cl2, or 1.5 C6H6. The oxy forms comprise between 1:5 and 1:3 O2:[Co] stoichiometries. Class II materials achieve an apparent maximum of 1:2 O2:Co(salen) stoichiometries. The precursors for the Class II materials comprise [Co(3R-salen)(L)·(H2O)x], R = H, L = pyridine, and x = 0; R = F, L = H2O, and x = 0; R = F, L = pyridine, and x = 0; R = F, L = piperidine, and x = 1. Activation of these depends on the desorption of the apical ligand (L) that templates channels through the crystalline compounds with the Co(3R-salen) molecules interlocked in a Flemish bond brick pattern. The 3F-salen system produces F-lined channels proposed to facilitate O2 transport through the materials through repulsive interactions with the guest O2. We postulate that a moisture dependence of the activity of the Co(3F-salen) series is due to a highly specific binding pocket for locking in water via bifurcated hydrogen bonding to the two coordinated phenolato O atoms and the two ortho F atoms.

5.
J Org Chem ; 87(9): 6087-6096, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35471006

RESUMO

Arene-arene interactions are fundamentally important in molecular recognition. To precisely probe arene-arene interactions in cyclophanes, we designed and synthesized (2,6-phenol)paracyclophanes and (2,6-aniline)paracyclophanes that possess two aromatic rings in close proximity. Fine-tuning the aromatic character of one aromatic ring by fluorine substituents enables investigations on the intramolecular interactions between the electron-rich phenol and aniline with tetra-H- and tetra-F-substituted benzene. pKa measurements revealed that the tetra-F-template increases the acidity of the phenol (ΔpKa = 0.55). X-ray crystallography and computational analyses demonstrated that all [3,3]metaparacyclophanes adopt cofacial parallel conformations, implying the presence of π-π stacking interactions. Advanced quantum chemical analyses furthermore revealed that both electrostatic interactions and orbital interactions provide the key contribution to the structure and stability of [3,3]metaparacyclophanes.


Assuntos
Compostos de Anilina , Fenóis , Cristalografia por Raios X , Conformação Molecular , Eletricidade Estática
6.
RSC Adv ; 12(10): 5772-5781, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424558

RESUMO

The antimony(iii) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed. The Sb(iii) ion in Na[Sb(DOTA)]·4H2O shows an approximately square antiprismatic coordination geometry that is close to superimposable to the Bi(iii) geometry in [Bi(DOTA)]- in two phases containing this anion, Na[Bi(DOTA)]·4H2O, [H3O][Bi(DOTA)]·H2O for which structures are also described. Interestingly, DOTA itself in [(H6DOTA)]Cl2·4H2O·DMSO shows the same orientation of the N4O4 metal binding cavity reflecting the limited flexibility of DOTA in an octadentate coordination mode. In 8-coordinate complexes it can however accommodate M(iii) ions with r ion spanning a relatively wide range from 87 pm (Sc(iii)) to 117 pm (Bi(iii)). The larger Bi3+ ion appears to be the best metal-ligand size match since [Bi(DOTA)]- is associated with greater complex stability. In the solution state, [Sb(DOTA)]- is extremely susceptible to transmetallation by trivalent ions (Sc(iii), Y(iii), Bi(iii)) and, significantly, even by biologically important divalent metal ions (Mg(ii), Ca(ii), Zn(ii)). In all cases just one equivalent is enough to displace most of the Sb(iii). [Sb(DOTA)]- is resistant to hydrolysis; however, since biologically more abundant metal ions easily substitute the antimony, DOTA complexes will not be suitable for deployment for the delivery of the, so far unexploited, theranostic isotope pair 119Sb and 117Sb.

7.
Chemistry ; 28(9): e202104044, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34958482

RESUMO

Boronic acids are Lewis acids that exist in equilibrium with boronate forms in aqueous solution. Here we experimentally and computationally investigated the Lewis acidity of 2,6-diarylphenylboronic acids; specially designed phenylboronic acids that possess two flanking aromatic rings with tunable aromatic character. Hammett analysis of 2,6-diarylphenylboronic acids reveals that their Lewis acidity remains unchanged upon the introduction of EWG/EDG at the distant para position of the flanking aromatic rings. Structural and computational studies demonstrate that polar-π interactions and solvation effects contribute to the stabilization of boronic acids and boronate forms by aromatic rings. Our physical-organic chemistry work highlights that boronic acids and boronates can be stabilized by aromatic systems, leading to an important molecular knowledge for rational design and development of boronic acid-based catalysts and inhibitors of biomedically important proteins.


Assuntos
Ácidos Borônicos , Ácidos de Lewis , Ácidos Borônicos/química , Proteínas/química
8.
J Am Chem Soc ; 143(37): 15400-15412, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491045

RESUMO

Aqueous solutions of the iron(III) complex of N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate (tpena) react with hypochlorite (ClO-) to produce the reactive high-valent [FeIV(O)(tpena)]+. Under catalytic conditions, in bicarbonate-buffered media (pH 8) with a set ionic strength (10 mM NaCl), kinetic analysis shows that two equivalents of [FeIV(O)(tpena)]+ per one ClO- are produced, with benign chloride ions the only byproduct. An unprecedented supramolecular activation of ClO- by {(HCO3)⊂[(tpena)FeIII(µ-O)FeIII(Htpena)]}2+ is proposed. This mode of activation has great advantage for use in the catalytic oxidation of C-H bonds in water since: (i) the catalyst scaffold is protected from oxidative degradation and (ii) undesirable radical side reactions which produce toxic chlorinated compounds are circumvented by this novel coactivation of water and ClO-. The unique activation mechanism by the Fe-tpena system makes possible the destruction of organic contaminants as an add-on technology to water disinfection by chlorination, demonstrated here through (i) the catalytic oxidation of micropollutant metaldehyde, and (ii) mineralization of the model substrate formate. The resting-state speciation at pH 3, 5, 7, and 9, as well as the catalytically active iron speciation are characterized with Mössbauer and EPR spectroscopy and supported by DFT calculations. Our study provides fundamentally new insights into the design and activation mode of iron-based catalysts relevant to applications in water remediation.

9.
Dalton Trans ; 50(14): 4819-4829, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33877179

RESUMO

The coupling of selective C-H activation with O2 activation is an important goal for organic synthesis. New experimental and computational results, along with the results from experimental work accumulated over many decades, now unequivocally link O2 activation with C-H activation by the classic Co(salen) complexes. A common holistic mechanistic framework can rationalise the formation of ostensibly diverse peroxo, superoxo, organo and alkoxide complexes of CoIII(salen). DFT calculations show that cobalt(iii)superoxo, dicobalt(iii)peroxo and cobalt(iii)hydroperoxo complexes are all viable intermediates as participants in hydrogen atom transfer reactions, whereas a Co(iv)oxo intermediate is unlikely. The reaction conditions will determine the pathway followed and all pathways are initiated through the initial formation of a superoxo complex, CoIII(salen)(O2˙)(MeOH) (EPR: g = 2.025, A = 19 G). Organo and alkoxide ligands are derived from solvent media and the trends in reactivity reveal that combination of the pKa and BDE of the C-H of the respective solvent substrates are important. These data explain why landmark, structurally characterized, µ2-η1,η2-peroxide and η1-superoxide Co(salen)-O2 adducts were predominantly isolated from solvents with high C-H pKa values (DMSO, DMF, DMA).

10.
Inorg Chem ; 60(3): 1975-1984, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470794

RESUMO

A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.

11.
Chemistry ; 27(18): 5721-5729, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33377554

RESUMO

Aromatic rings form energetically favorable interactions with many polar groups in chemical and biological systems. Recent molecular studies have shown that sulfonamides can chelate metal ions and form hydrogen bonds, however, it is presently not established whether the polar sulfonamide functionality also interacts with aromatic rings. Here, synthetic, spectroscopic, structural, and quantum chemical analyses on 2,6-diarylbenzenesulfonamides are reported, in which two flanking aromatic rings are positioned close to the central sulfonamide moiety. Fine-tuning the aromatic character by substituents on the flanking rings leads to linear trends in acidity and proton affinity of sulfonamides. This physical-organic chemistry study demonstrates that aromatic rings have a capacity to stabilize sulfonamides via through-space NH-π interactions. These results have implications in rational drug design targeting electron-rich aromatic rings in proteins.


Assuntos
Proteínas , Sulfonamidas , Ligação de Hidrogênio , Modelos Moleculares , Prótons
12.
Inorg Chem ; 59(22): 16281-16290, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33021370

RESUMO

The high-spin (S = 5/2) meridional diastereoisomer of [FeIII(tpena)]2+ (tpena = N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate), mer-[Fe(tpena)]2+, undergoes photolytic CO2 release to produce an iron(II) intermediate of a radical dihydroimidazopyridine ligand (L•). The structure of this unprecedented transient iron(II)(L•) complex is supported by UV-vis and Mössbauer spectroscopies, DFT calculations, as well as the X-ray structural characterization of an µ-oxo iron(III) complex of the oxidized derivative of L•, namely, [FeIII2O(Cl)2(L+)2](ClO4)4(MeCN)2 (L+ = 2-(2-(bis(pyridin-2-ylmethyl)amino)ethyl)-2,3-dihydro-1H-imidazo[1,5-a]pyridin-4-ium). [FeIII2O(Cl)2(L+)2]4+ is obtained only in the absence of O2. Under aerobic conditions, O2 will intercept the iron(II)(L•) complex to form a putative Fe(III)-alkylperoxide complex which cascades to an iron(II) complex of SBPy3 (SBPy3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-aldimine). Thus, through different oxidative pathways, the unknown ligand L+ or SBPy3 forms by loss of a one-carbon-atom or a two-carbon-atom unit, respectively, from the glycyl arm of tpena. Acceleration of the photodecarboxylation step is achieved by addition of thiocyanate because of transient formation of a more photoreactive NCS- adduct of [Fe(tpena)]2+. This has allowed for kinetic observation of the reaction of [FeII(L•)]2+ with O2 which is, unexpectedly, promoted also by light. We propose that this corresponds to the energy needed for the conversion of the ring-closed radical ligand L• to a ring-opened tautomer to allow for O2 insertion between the C and Fe atoms of the iron(II) complex.

13.
Org Lett ; 22(20): 7870-7873, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32991183

RESUMO

Molecular balances based on the dibenzobicyclo[3.2.2]nonane template enable probing of the competition between halogen-π and CH-π interactions. Structural, NMR spectroscopic, and computational analyses revealed that the π system can favorably interact both with C-X or C-H functionalities, depending on the size of the functional group.

14.
Chemphyschem ; 21(11): 1080, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32496661

RESUMO

The front cover artwork is provided by Marijn Maas from the group of Prof. Jasmin Mecinovic (University of Southern Denmark). The image shows the stabilization of thiols by aromatic rings, as a result of energetically favorable SH-π interactions in a designed small molecule and in proteins. Read the full text of the Article at 10.1002/cphc.202000132.

15.
Chemphyschem ; 21(11): 1092-1100, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32253802

RESUMO

Molecular recognition between polar groups and aromatic molecules is fundamentally important to rational drug design. Although it has been well established that many polar functionalities interact with electron-rich aromatic residues through energetically favorable polar-π interactions, there is a limited understanding of the association between thiols and aromatic systems. Herein we report physical-organic chemistry studies on 2,6-diarylthiophenols that possess the central thiophenol ring and two flanking aromatic rings with tunable electronic properties caused by substituents at distant para position. Hammett analysis revealed that pKa values and proton affinities correlate well with Hammett sigma values of substituents. Additional energy decomposition analysis supported the conclusion that both through-space SH-π interactions and S- -π interactions contribute to intramolecular stabilization of 2,6-diarylthiophenols.

16.
J Am Chem Soc ; 142(20): 9471-9481, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312041

RESUMO

Nine metal-organic frameworks have been prepared with the hexagon-shaped linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene (H6cpb) by solvothermal reactions in dimethylformamide (dmf) or dimethylacetamide (dmac) with acetic acid or formic acid as modulators: [Bi2(cpb)(acetato)2(dmf)2]·2dmf CTH-6 forms a rtl-net; 2(H2NMe2)[Cu2(cpb)] CTH-7 forms a kgd-net; [Fe4(cpb)(acetato)2(dmf)4] CTH-8 and [Co4(cpb)(acetato)2(dmf)4] CTH-9 are isostructural and form yav-nets; 2(HNEt3)[Fe2(cpb)] CTH-10 and the two polymorphs of 2(H2NMe2)[Zn2(cpb)]·1.5dmac, Zn-MOF-888 and CTH-11, show kgd-nets; [Cu2(cpb)(acetato)2(dmf)2]·2dmf, CTH-12, forms a mixed coordination and hydrogen-bonded sql-net; and 2(H2NMe2)[Zn2(cpb)] CTH-13, a similarly mixed yav-net. Surface area values (Brunauer-Emmett-Teller, BET) range from 34 m2 g-1 for CTH-12 to 303 m2 g-1 for CTH-9 for samples activated at 120 °C in dynamic vacuum. All compounds show normal (10-fold higher) molar CO2 versus N2 uptake at 298 K, except the 19-fold CO2 uptake for CTH-12 containing Cu(II) dinuclear paddle-wheels. We also show how perfect hexagons and triangles can combine to a new 3D topology laf, a model of which gave us the idea of foldable network topologies, as the laf-net can fold into a 2D form while retaining the local geometry around each vertex. Other foldable nets identified are cds, cds-a, ths, sqc163, clh, jem, and tfc covering the basic polygons and their combinations. The impact of this concept on "breathing" MOFs is discussed. I2 sorption, both from gas phase and from MeOH solution, into CTH-7 were studied by time of flight secondary ion mass spectrometry (ToF-SIMS) on dried crystals. I2 was shown to have penetrated the crystals, as layers were consecutively peeled off by the ion beam. We suggest ToF-SIMS to be a method for studying sorption depth profiles of MOFs.

17.
J Med Chem ; 63(7): 3577-3595, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32141297

RESUMO

Free fatty acid receptor 3 (FFA3, previously GPR41) is activated by short-chain fatty acids, mediates health effects of the gut microbiota, and is a therapeutic target for metabolic and inflammatory diseases. The shortage of well-characterized tool compounds has however impeded progress. Herein, we report structure-activity relationship of an allosteric modulator series and characterization of physicochemical and pharmacokinetic properties of selected compounds, including previous and new tools. Two representatives, 57 (TUG-1907) and 63 (TUG-2015), showed improved solubility and preserved potency. Of these, 57, with EC50 = 145 nM and a solubility of 33 µM, showed high clearance in vivo but is a preferred tool in vitro. In contrast, 63, with EC50 = 162 nM and a solubility of 9 µM, showed lower clearance and seems better suited for in vivo studies. Using 57, we demonstrate for the first time that FFA3 activation leads to calcium mobilization in murine dorsal root ganglia.


Assuntos
Quinolonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Animais , Estabilidade de Medicamentos , Gânglios Espinais/efeitos dos fármacos , Humanos , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/metabolismo , Quinolonas/farmacocinética , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-Atividade
18.
Langmuir ; 35(38): 12339-12349, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31470693

RESUMO

A mixed valence diiron(II/III) complex with the ligand 2,6-bis{bis[(2-pyridinylmethyl)amino]methyl}phenol (bppH) has been covalently anchored onto graphene using a mild in situ microwave-assisted diazonium coupling through an aryl amino precursor and isoamyl nitrite. A dinuclear iron complex is then formed by complexation of the grafted bppH-graphene material with iron(II) in the presence of dioxygen. X-ray photoelectron spectroscopy (XPS), atomic force microscopy, cyclic voltammetry, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy confirm the formation of the anchored ligand and derivative diiron complexes. Semiquantitative XPS analysis shows an average bppH ligand bulk loading of 0.33 mmol/g, corresponding to a significant 20.7 wt % of the functionalized material consisting of grafted moieties. EPR measurements reveal the existence of a strong isotropic S = 1/2 spin center associated with the graphene lattice, together with a much weaker S = 5/2 signal, associated with the iron(III) center of the grafted complex. The grafted complex is redox-active with surface-confined FeIIFeII → FeIIFeIII (+0.56 V vs NHE), FeIIFeIII → FeIIIFeIII (+0.73 V), and FeIIIFeIII → FeIIIFeIV (+0.95 V) redox processes accessible, with an estimated surface coverage of 58 pmol cm-2 established from the electrochemical measurements.

19.
Chem Commun (Camb) ; 55(71): 10551-10554, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31414677

RESUMO

A bridging nitrite and a nitrate counter anion per Co2 site are generated in-crystal and an arylamine group on the ligand scaffold is oxidised to a nitro group when nitric oxide (NO) is chemisorbed by molecular crystals of cobalt complexes.

20.
Inorg Chem ; 58(14): 8983-8994, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251041

RESUMO

The FeIII/FeII redox potentials for [Fe(tpen)]2+/3+, [Fe(tpena)]+/2+, and [Fe(tpenO)]+/2+ (N-R-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine, where R = CH2C6H4N, CH2COO-, CH2CH2O-, respectively) span 470 mV with the oxidation potentials following the order [FeII(tpenO)]+ (MeOH) < [FeII(tpena)]+ (MeCN) < [FeII(tpen)]2+ (MeCN). In their +3 oxidation states the complexes react with 1 equiv of H2O2 to give the purple [FeIII(OOH)(HL)]n+ (n = 2 for L = tpena, tpenO; n = 3 for L = tpen). A pyridine arm is decoordinated in these complexes, furnishing a second coordination sphere base which is protonated at ambient pH. The lifetimes of these transient species depend on how readily the substrate (sometimes the solvent) is oxidized and reflect the trend in both the O-O bond lability and oxidizing potency of the putative iron-based oxidant derived from the iron(III) peroxides. In methanol solution, [FeIII(tpenO)]2+ and [FeIII(tpena)]2+ exist in their Fe(III) states and hence the formation of [FeIII(OOH)(Htpena)]2+ and [FeIII(OOH)(HtpenO)]2+ is instantaneous. This is in contrast to the short lag time that occurs before adduct formation between [FeII(tpen)]2+ and H2O2 due to the requisite prior oxidation of the solution-state iron(II) complex to its iron(III) state. Stabilization of the +3 iron oxidation state in the resting state catalysts affords complexes that activate H2O2 more readily with the consequence of higher yields in the oxidation of the C-H bonds using H2O2 as terminal oxidant. The presence of a cis monodentate carboxylato donor increases the rate of oxidation by hydrogen atom transfer in comparison to the systems with an alkoxo or pyridine in this position. Competing with substrate oxidation is the oxidative modification of the alkoxido group in [FeIII(tpenO)]2+, converting it to a carboxylato group in the presence of H2O2: in effect, transforming tpenO to tpena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...