Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 21(4): 520-533, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36849877

RESUMO

Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-AN are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO2 network modes (D1 mode) and the Q-species modes (~1015 cm-1 ) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.


Assuntos
Dióxido de Silício , Análise Espectral Raman , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Análise Espectral Raman/métodos , Plantas , Difração de Raios X
2.
Environ Sci Technol ; 41(2): 431-6, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17310703

RESUMO

Technetium, found in some nuclear wastes (such as those generated from spent fuel reprocessing), is of particular concern with regard to long-term waste storage because of its long half-life (2.13 x 10(5) years) and high mobility in the environment. One method of stabilization of such waste is through vitrification to produce a durable borosilicate glass matrix. The fate of Tc under hydrothermal conditions in the vapor hydration test (VHT) was studied to assess and possibly predict the long-term rate of release of Tc from borosilicate waste glass. For comparison, the fate of rhenium, the preferred nonradioactive surrogate for Tc, was similarly studied. X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) measurements were made on each original borosilicate glass and the corresponding sample after the VHT. Tc K-edge XAS indicates that, despite starting with different Tc(IV) and Tc(VII) distributions in each glass, both corresponding VHT samples contain 100% Tc(IV). The Tc reduction within the VHT samples may be driven by the low-oxygen atmosphere compounded by oxygen depletion from corrosion of the surrounding stainless steel vessel. From SEM analyses, both of the Tc-containing VHT samples show complete alteration of the original glass, significant Tc enrichment near the sample surface, and nearly complete depletion of Tc toward the sample center. XAS indicates Tc(IV)O6 octahedra, possibly within gel-like amorphous silicates in both VHT samples, where Tc-Tc correlations are observed in the higher Tc-content VHT sample. Re L(II)-edge XAS and SEM indicate quite different behavior for Re under VHT conditions. The Re oxidation state appears to be invariant with respect to the VHT treatment, where perrhenate (Re(VII)) species are dominant in all Re-containing samples investigated; Re2O7 concentrations are low near the sample surface and increase to approach that of the unreacted glass toward the sample center.


Assuntos
Vidro/química , Resíduos Radioativos/prevenção & controle , Rênio/química , Tecnécio/química , Temperatura Alta , Microscopia Eletrônica de Varredura , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...