Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 35(5): 738-751.e9, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085175

RESUMO

Ripretinib (DCC-2618) was designed to inhibit the full spectrum of mutant KIT and PDGFRA kinases found in cancers and myeloproliferative neoplasms, particularly in gastrointestinal stromal tumors (GISTs), in which the heterogeneity of drug-resistant KIT mutations is a major challenge. Ripretinib is a "switch-control" kinase inhibitor that forces the activation loop (or activation "switch") into an inactive conformation. Ripretinib inhibits all tested KIT and PDGFRA mutants, and notably is a type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitors. Ripretinib shows efficacy in preclinical cancer models, and preliminary clinical data provide proof-of-concept that ripretinib inhibits a wide range of KIT mutants in patients with drug-resistant GISTs.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mutação/efeitos dos fármacos , Mutação/genética
2.
Br J Cancer ; 121(3): 281, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31123346

RESUMO

The additional information of this manuscript originally stated that the authors declare no competing interests. This statement was incorrect, and should instead have stated the following:M.C.H. has the following competing interests to declare: Equity interest at Molecular MD; Consulting at Molecular MD, Blueprint Medicines, Deciphera Pharmaceuticals; Expert Testimony at Novartis; Licensed patent with royalty payments at Novartis. The remaining authors have no competing interests to declare.The authors apologise for any convenience this may have caused.

3.
Br J Cancer ; 120(6): 612-620, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30792533

RESUMO

BACKGROUND: Most patients with KIT-mutant gastrointestinal stromal tumours (GISTs) benefit from imatinib, but treatment resistance results from outgrowth of heterogeneous subclones with KIT secondary mutations. Once resistance emerges, targeting KIT with tyrosine kinase inhibitors (TKIs) sunitinib and regorafenib provides clinical benefit, albeit of limited duration. METHODS: We systematically explored GIST resistance mechanisms to KIT-inhibitor TKIs that are either approved or under investigation in clinical trials: the studies draw upon GIST models and clinical trial correlative science. We subsequently modelled in vitro a rapid TKI alternation approach against subclonal heterogeneity. RESULTS: Each of the KIT-inhibitor TKIs targets effectively only a subset of KIT secondary mutations in GIST. Regorafenib and sunitinib have complementary activity in that regorafenib primarily inhibits imatinib-resistance mutations in the activation loop, whereas sunitinib inhibits imatinib-resistance mutations in the ATP-binding pocket. We find that rapid alternation of sunitinib and regorafenib suppresses growth of polyclonal imatinib-resistant GIST more effectively than either agent as monotherapy. CONCLUSIONS: Our data highlight that heterogeneity of KIT secondary mutations is the main mechanism of tumour progression to KIT inhibitors in imatinib-resistant GIST patients. Therapeutic combinations of TKIs with complementary activity against resistant mutations may be useful to suppress growth of polyclonal imatinib-resistance in GIST.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Animais , Células CHO , Ensaios Clínicos Fase II como Assunto , Cricetulus , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Gastrointestinais/enzimologia , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/enzimologia , Tumores do Estroma Gastrointestinal/genética , Humanos , Mesilato de Imatinib/farmacologia , Camundongos , Camundongos Nus , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Piridinas/farmacologia , Sunitinibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 18(16): 4375-84, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22745105

RESUMO

PURPOSE: To determine the potential of crenolanib, a potent inhibitor of PDGFRA, to treat malignancies driven by mutant PDGFRA. EXPERIMENTAL DESIGN: The biochemical activity of crenolanib was compared with imatinib using a panel of PDGFRA-mutant kinases expressed in several different cell line models, including primary gastrointestinal stromal tumors (GIST) cells. The antiproliferative activity of crenolanib was also studied in several cell lines with PDGFRA-dependent growth. RESULTS: Crenolanib was significantly more potent than imatinib in inhibiting the kinase activity of imatinib-resistant PDGFRA kinases (D842I, D842V, D842Y, DI842-843IM, and deletion I843). For example, crenolanib was 135-fold more potent than imatinib against D842V in our isogenic model system, with an IC(50) of approximately 10 nmol/L. The relative potency of crenolanib was further confirmed in BaF3 and primary GIST cells expressing PDGFRA D842V. In contrast, imatinib was at least 10-fold more potent than crenolanib in inhibiting the V561D mutation. For all other tested PDGFRA mutations, crenolanib and imatinib had comparable potency. CONCLUSIONS: Crenolanib is a potent inhibitor of imatinib-resistant PDGFRA kinases associated with GIST, including the PDGFRA D842V mutation found in approximately 5% of GISTs. The spectrum of activity of crenolanib suggests that this drug is a type I inhibitor (inhibitor of activated conformation of kinase). Based in part on these results, a phase II clinical study of this agent to treat GIST with the PDGFRA D842V mutation has been initiated.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/genética , Mutação , Piperazinas/farmacologia , Pirimidinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Benzamidas , Células CHO , Linhagem Celular Tumoral , Cricetinae , Ativação Enzimática/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Concentração Inibidora 50 , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores
5.
Mol Cancer Ther ; 11(8): 1770-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665524

RESUMO

Sorafenib has substantial clinical activity as third- or fourth-line treatment of imatinib- and sunitinib-resistant gastrointestinal stromal tumors (GIST). Because sorafenib targets both angiogenesis-related kinases (VEGFR) and the pathogenetic kinases found in GIST (KIT or PDGFRA), the molecular basis for sorafenib efficacy in this setting remains unknown. We sought to determine the spectrum of activity of sorafenib against different mutant kinases associated with drug-sensitive and drug-resistant GIST. We compared the activity of imatinib and sorafenib against transiently expressed mutant forms of KIT and PDGFRA, including various secondary mutations that have been identified in imatinib-resistant or sunitinib-resistant GISTs. We also examined these drugs against four GIST cell lines, three of which are imatinib resistant. In our in vitro studies, we determined that sorafenib inhibited imatinib-resistant mutations in exons encoding the ATP/drug-binding pocket and in exons encoding the activation loop, with the exception of substitutions at KIT codon D816 and PDGFRA codon 842. Notably our data indicate that sorafenib is more effective than imatinib or sunitinib for inhibiting the kinase activity of drug-resistant KIT mutants (as assessed by biochemical IC(50)). We hypothesize that a major determinant of the efficacy of sorafenib for treatment of advanced GIST is the activity of this agent against KIT or PDGFRA-mutant kinases. These results have implications for the further development of treatments for drug-resistant GIST.


Assuntos
Benzenossulfonatos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Piridinas/farmacologia , Benzamidas , Linhagem Celular Tumoral , Humanos , Mesilato de Imatinib , Concentração Inibidora 50 , Niacinamida/análogos & derivados , Compostos de Fenilureia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/farmacologia , Sorafenibe
6.
J Mol Diagn ; 13(5): 504-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21726664

RESUMO

There is an immediate and critical need for a rapid, broad-based genotyping method that can evaluate multiple mutations simultaneously in clinical cancer specimens and identify patients most likely to benefit from targeted agents now in use or in late-stage clinical development. We have implemented a prospective genotyping approach to characterize the frequency and spectrum of mutations amenable to drug targeting present in urothelial, colorectal, endometrioid, and thyroid carcinomas and in melanoma. Cancer patients were enrolled in a Personalized Cancer Medicine Registry that houses both clinical information and genotyping data, and mutation screening was performed using a multiplexed assay panel with mass spectrometry-based analysis to detect 390 mutations across 30 cancer genes. Formalin fixed, paraffin-embedded specimens were evaluated from 820 Registry patients. The genes most frequently mutated across multiple cancer types were BRAF, PIK3CA, KRAS, and NRAS. Less common mutations were also observed in AKT1, CTNNB1, FGFR2, FGFR3, GNAQ, HRAS, and MAP2K1. Notably, 48 of 77 PIK3CA-mutant cases (62%) harbored at least one additional mutation in another gene, most often KRAS. Among melanomas, only 54 of 73 BRAF mutations (74%) were the V600E substitution. These findings demonstrate the diversity and complexity of mutations in druggable targets among the different cancer types and underscore the need for a broad-spectrum, prospective genotyping approach to personalized cancer medicine.


Assuntos
Análise Mutacional de DNA/métodos , Espectrometria de Massas/métodos , Mutação/genética , Neoplasias/genética , Medicina de Precisão , Sistema de Registros , Adulto , Classe I de Fosfatidilinositol 3-Quinases , Feminino , Genes Neoplásicos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Sensibilidade e Especificidade
7.
J Clin Oncol ; 26(33): 5352-9, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18955458

RESUMO

PURPOSE: Most gastrointestinal stromal tumors (GISTs) harbor mutant KIT or platelet-derived growth factor receptor alpha (PDGFRA) kinases, which are imatinib targets. Sunitinib, which targets KIT, PDGFRs, and several other kinases, has demonstrated efficacy in patients with GIST after they experience imatinib failure. We evaluated the impact of primary and secondary kinase genotype on sunitinib activity. PATIENTS AND METHODS: Tumor responses were assessed radiologically in a phase I/II trial of sunitinib in 97 patients with metastatic, imatinib-resistant/intolerant GIST. KIT/PDGFRA mutational status was determined for 78 patients by using tumor specimens obtained before and after prior imatinib therapy. Kinase mutants were biochemically profiled for sunitinib and imatinib sensitivity. RESULTS: Clinical benefit (partial response or stable disease for > or = 6 months) with sunitinib was observed for the three most common primary GIST genotypes: KIT exon 9 (58%), KIT exon 11 (34%), and wild-type KIT/PDGFRA (56%). Progression-free survival (PFS) was significantly longer for patients with primary KIT exon 9 mutations (P = .0005) or with a wild-type genotype (P = .0356) than for those with KIT exon 11 mutations. The same pattern was observed for overall survival (OS). PFS and OS were longer for patients with secondary KIT exon 13 or 14 mutations (which involve the KIT-adenosine triphosphate binding pocket) than for those with exon 17 or 18 mutations (which involve the KIT activation loop). Biochemical profiling studies confirmed the clinical results. CONCLUSION: The clinical activity of sunitinib after imatinib failure is significantly influenced by both primary and secondary mutations in the predominant pathogenic kinases, which has implications for optimization of the treatment of patients with GIST.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/genética , Indóis/uso terapêutico , Mutação , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Adulto , Idoso , Benzamidas , Progressão da Doença , Intervalo Livre de Doença , Éxons/genética , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Genótipo , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Sunitinibe
8.
Clin Cancer Res ; 14(9): 2717-25, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451237

RESUMO

PURPOSE: To evaluate the activity of imatinib in treating advanced, life-threatening malignancies expressing one or more imatinib-sensitive tyrosine kinases. EXPERIMENTAL DESIGN: This was a phase II, open-label, single arm study. Patients > or = 15 years old with malignancies showing histologic or molecular evidence of expression/activation of imatinib-sensitive tyrosine kinases were enrolled. Patients were treated with 400 or 800 mg/d imatinib for hematologic malignancy and solid tumors, respectively. Treatment was continued until disease progression or unacceptable toxicity. The primary objective was to identify evidence of imatinib activity with tumor response as the primary end point. RESULTS: One hundred eighty-six patients with 40 different malignancies were enrolled (78.5% solid tumors, 21.5% hematologic malignancies). Confirmed response occurred in 8.9% of solid tumor patients (4 complete, 9 partial) and 27.5% of hematologic malignancy patients (8 complete, 3 partial). Notable activity of imatinib was observed in only five tumor types (aggressive fibromatosis, dermatofibrosarcoma protuberans, hypereosinophilic syndrome, myeloproliferative disorders, and systemic mastocytosis). A total of 106 tumors were screened for activating mutations: five KIT mutations and no platelet-derived growth factor receptor mutations were found. One patient with systemic mastocytosis and a partial response to therapy had a novel imatinib-sensitive KIT mutation (D816T). There was no clear relationship between expression or activation of wild-type imatinib-sensitive tyrosine kinases and clinical response. CONCLUSION: Clinical benefit was largely confined to diseases with known genomic mechanisms of activation of imatinib target kinases. Our results indicate an important role for molecular characterization of tumors to identify patients likely to benefit from imatinib treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Benzamidas , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Humanos , Mesilato de Imatinib , Estimativa de Kaplan-Meier , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...