Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566234

RESUMO

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Assuntos
Depressão , Colaterais de Schaffer , Animais , Camundongos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
2.
Semin Perinatol ; 48(2): 151889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38565434

RESUMO

Patient-triggered modes of ventilation are currently the standard of practice in the care of term and preterm infants. Maintaining spontaneous breathing during mechanical ventilation promotes earlier weaning and possibly reduces ventilator-induced diaphragmatic dysfunction. A further development of assisted ventilation provides support in proportion to the respiratory effort and enables the patient to have full control of their ventilatory cycle. In this paper we will review the literature on two of these modes of ventilation: neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV), propose future studies and suggest clinical applications of these modes.


Assuntos
Suporte Ventilatório Interativo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Respiração Artificial , Diafragma , Volume de Ventilação Pulmonar
3.
PNAS Nexus ; 3(2): pgae062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384385

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.

4.
Neuro Oncol ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271182

RESUMO

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.

5.
Reg Stud Mar Sci ; 62: 1-14, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854150

RESUMO

This study examined geographical and seasonal patterns in carbonate chemistry and will facilitate assessment of acidification conditions and the current state of the seawater carbonate chemistry system in Narragansett Bay. Direct measurements of total alkalinity, dissolved inorganic carbon, dissolved oxygen percent saturation, water temperature, salinity and pressure were performed during monthly sampling cruises carried out over three years. These measurements were used to calculate the following biologically relevant carbonate system parameters: total pH (pHT), the partial pressure of carbon dioxide in the gas phase pCO2, and the aragonite saturation state ΩA. The information provided by carbonate chemistry analysis allowed for the characterization of acidification events which have the potential to disrupt the species composition and ecological functioning of coastal biological communities and threaten commercially important aquatic life. We found very robust relationships between salinity and total alkalinity Radjusted2=0.82 and between salinity and dissolved inorganic carbon Radjusted2=0.81 that persisted through all regions, seasons, and depth-layers with mixing of coastal waters with freshwater entering in the upper bay being an important driver on alkalinity and dissolved inorganic carbon distributions. We compared the metabolically linked calculated carbonate system parameters with dissolved oxygen (DO) saturation and found high correlation, with DO percent saturation exhibiting robust correlation with the calculated carbonate system parameters total pH (r=0.70) and with partial pressure of carbon dioxide in the gas phase (r=-0.71). Using a statistical model to correct for the confounded effects of time and space that are a common challenge in marine survey design, we found that acidification events occurred in the Northern Region of the bay, primarily during the Summer and Fall, and likely due to a combination of microbial respiration and stratification. These acidification events, especially in the Northern Region, have the potential to adversely impact aquatic life.

6.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577654

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the CNS and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein, are critical for mGluR-LTD and protect spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite of its modulation on the structural plasticity. In the present study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data show for the first time that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight to our understanding of spine/synapse-specific plasticity. Significance statement: Hippocampal group I metabotropic glutamate receptor dependent long-term depression (mGluR-LTD), a form of learning and memory, is misregulated in many murine models of neurodevelopmental disorders. Despite extensive studies there is a paucity of information on the molecular mechanism underlying mGluR-LTD. Previously, we reported that loss of synaptopodin, an actin-associated protein found in a subset of mature dendritic spines, impairs mGluR-LTD. In the current study, we uncover the molecular and cellular deficits involved. We find that synaptopodin is required for the mGluR5-Homer interaction and uncover synaptopodin as a molecular switch for mGluR-LTD expression, as mGluR-LTD becomes protein synthesis-independent and relies on endocannabinoid signaling in synaptopodin knock-out. This work provides insight into synaptopodin as a gatekeeper to regulate mGluR-LTD at hippocampal synapses.

7.
Neurobiol Dis ; 183: 106157, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209925

RESUMO

Mitochondrial deficits have been observed in animal models of Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and in patient-derived fibroblasts. We investigated whether mitochondrial function could be restored in Sacs-/- mice, a mouse model of ARSACS, using the mitochondrial-targeted antioxidant ubiquinone MitoQ. After 10weeks of chronic MitoQ administration in drinking water, we partially reversed motor coordination deficits in Sacs-/- mice but did not affect litter-matched wild-type control mice. MitoQ administration led to a restoration of superoxide dismutase 2 (SOD2) in cerebellar Purkinje cell somata without altering Purkinje cell firing deficits. Purkinje cells in anterior vermis of Sacs-/- mice normally undergo cell death in ARSACS; however, Purkinje cells numbers were elevated after chronic MitoQ treatment. Furthermore, Purkinje cell innervation of target neurons in the cerebellar nuclei of Sacs-/- mice was also partially restored with MitoQ treatment. Our data suggest that MitoQ is a potential therapeutic treatment for ARSACS and that it improves motor coordination via increasing cerebellar Purkinje cell mitochondria function and reducing Purkinje cell death.


Assuntos
Ataxia Cerebelar , Células de Purkinje , Animais , Camundongos , Células de Purkinje/metabolismo , Antioxidantes/farmacologia , Ataxia/tratamento farmacológico , Ataxia/metabolismo , Ataxia Cerebelar/metabolismo , Mitocôndrias , Modelos Animais de Doenças
8.
ACS Chem Neurosci ; 14(4): 677-688, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36717083

RESUMO

The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.


Assuntos
Proteína HMGB1 , Sulfatos , Sulfatos/química , Lipopolissacarídeos/farmacologia , Espectrometria de Massas em Tandem , Polímeros/farmacologia , Polímeros/química , Neurônios
9.
Front Physiol ; 13: 892196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547574

RESUMO

Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.

10.
J Biol Chem ; 298(5): 101840, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307349

RESUMO

Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation as an in vitro model for ischemia, we show that BDNF-tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ubiquitina-Proteína Ligases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Membrana , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Tropomiosina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
11.
J Neurosci ; 42(9): 1666-1678, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046120

RESUMO

Dendritic spines, actin-rich protrusions forming the postsynaptic sites of excitatory synapses, undergo activity-dependent molecular and structural remodeling. Activation of Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) by synaptic or pharmacological stimulation, induces LTD, but whether this is accompanied with spine elimination remains unresolved. A subset of telencephalic mushroom spines contains the spine apparatus (SA), an enigmatic organelle composed of stacks of smooth endoplasmic reticulum, whose formation depends on the expression of the actin-bundling protein Synaptopodin. Allocation of Synaptopodin to spines appears governed by cell-intrinsic mechanisms as the relative frequency of spines harboring Synaptopodin is conserved in vivo and in vitro Here we show that expression of Synaptopodin/SA in spines is required for induction of mGluR-LTD at Schaffer collateral-CA1 synapses of male mice. Post-mGluR-LTD, mushroom spines lacking Synaptopodin/SA are selectively lost, whereas spines harboring it are preserved. This process, dependent on activation of mGluR1 but not mGluR5, is conserved in mature mouse neurons and rat neurons of both sexes. Mechanistically, we find that mGluR1 supports physical retention of Synaptopodin within excitatory spine synapses during LTD while triggering lysosome-dependent degradation of the protein residing in dendritic shafts. Together, these results reveal a cellular mechanism, dependent on mGluR1, which enables selective preservation of stronger spines containing Synaptopodin/SA while eliminating weaker ones and potentially countering spurious strengthening by de novo recruitment of Synaptopodin. Overall, our results identify spines with Synaptopodin/SA as the locus of mGluR-LTD and underscore the importance of the molecular microanatomy of spines in synaptic plasticity.SIGNIFICANCE STATEMENT Long-term changes in functional synaptic strength are associated with modification of synaptic connectivity through stabilization or elimination of dendritic spines, the postsynaptic locus of excitatory synapses. How heterogeneous spine microanatomy instructs spine remodeling after long-term synaptic depression (LTD) remains unclear. Metabotropic glutamate receptors mGluR1 and mGluR5 induce a form of LTD critical to circuit function in physiological and disease conditions. Our results identify spines containing the protein Synaptopodin, which enables local assembly of a spine apparatus, as the locus of expression of mGluR-LTD and demonstrate a specific role of mGluR1 in promoting selective loss after mGluR-LTD of mature dendritic spines lacking Synaptopodin/spine apparatus. These findings highlight the fundamental contribution of spine microanatomy in selectively enabling functional and structural plasticity.


Assuntos
Actinas , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Actinas/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
12.
Sleep Med ; 89: 55-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883399

RESUMO

BACKGROUND: The objectives of this study were to: 1) characterize the sleep behaviors and symptoms of individuals with Christianson Syndrome (CS) by means of validated questionnaires; and 2) determine their associations with daytime emotional and behavioral symptoms in this population. METHODS: Participants included 16 boys genetically diagnosed with CS, between 2.5 and 40 years of age (M = 14.5 ± 8.08). Parents completed questionnaires regarding the sleep, daytime behavior, and health of their child. RESULTS: Of the participants, 31% did not obtain the recommended amount of sleep for their age, 43% experienced a prolonged sleep latency, and 88% had a clinical or sub-clinical score for at least one subscale of the Sleep Disturbance Scale for Children (SDSC). Specific problems detected included insomnia, sleep-wake transition disorders, periodic limb movements in sleep, and sleep related breathing disorders. About half of the participants manifested emotional and behavioral problems at clinical levels. Higher levels of sleep disturbances were associated with higher levels of behavioral and emotional daytime symptoms. CONCLUSIONS: Sleep problems are common in individuals with CS and are associated with daytime behavioral and emotional symptoms.


Assuntos
Epilepsia , Doenças Genéticas Ligadas ao Cromossomo X , Transtornos da Motilidade Ocular , Transtornos do Sono-Vigília , Ataxia , Criança , Epilepsia/complicações , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Humanos , Deficiência Intelectual , Masculino , Microcefalia , Transtornos da Motilidade Ocular/complicações , Sono , Transtornos do Sono-Vigília/complicações , Inquéritos e Questionários
13.
Biol Psychiatry ; 92(1): 81-95, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865853

RESUMO

BACKGROUND: ADNP is essential for embryonic development. As such, de novo ADNP mutations lead to an intractable autism/intellectual disability syndrome requiring investigation. METHODS: Mimicking humans, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 editing produced mice carrying heterozygous Adnp p.Tyr718∗ (Tyr), a paralog of the most common ADNP syndrome mutation. Phenotypic rescue was validated by treatment with the microtubule/autophagy-protective ADNP fragment NAPVSIPQ (NAP). RESULTS: RNA sequencing of spleens, representing a peripheral biomarker source, revealed Tyr-specific sex differences (e.g., cell cycle), accentuated in females (with significant effects on antigen processing and cellular senescence) and corrected by NAP. Differentially expressed, NAP-correctable transcripts, including the autophagy and microbiome resilience-linked FOXO3, were also deregulated in human patient-derived ADNP-mutated lymphoblastoid cells. There were also Tyr sex-specific microbiota signatures. Phenotypically, Tyr mice, similar to patients with ADNP syndrome, exhibited delayed development coupled with sex-dependent gait defects. Speech acquisition delays paralleled sex-specific mouse syntax abnormalities. Anatomically, dendritic spine densities/morphologies were decreased with NAP amelioration. These findings were replicated in the Adnp+/- mouse, including Foxo3 deregulation, required for dendritic spine formation. Grooming duration and nociception threshold (autistic traits) were significantly affected only in males. Early-onset tauopathy was accentuated in males (hippocampus and visual cortex), mimicking humans, and was paralleled by impaired visual evoked potentials and correction by acute NAP treatment. CONCLUSIONS: Tyr mice model ADNP syndrome pathology. The newly discovered ADNP/NAP target FOXO3 controls the autophagy initiator LC3 (microtubule-associated protein 1 light chain 3), with known ADNP binding to LC3 augmented by NAP, protecting against tauopathy. NAP amelioration attests to specificity, with potential for drug development targeting accessible biomarkers.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Tauopatias , Animais , Transtorno Autístico/patologia , Encéfalo/metabolismo , Potenciais Evocados Visuais , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Tauopatias/metabolismo , Proteínas tau
14.
Front Cell Neurosci ; 15: 707857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970120

RESUMO

Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs-/- mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.

15.
Front Pharmacol ; 12: 695270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354588

RESUMO

Background: Infants with severe bronchopulmonary dysplasia (BPD) are commonly treated with off-label drugs due to lack of approved therapies. To prioritize drugs for rigorous efficacy and safety testing, it is important to describe exposure patterns in this population. Objective: Our objective was to compare rates of drug exposure between preterm infants with severe bronchopulmonary dysplasia based on respiratory support status at or beyond 36 weeks post-menstrual age. Methods: A cross-sectional cohort study was performed on October 29, 2019. Preterm infants with severe BPD were eligible and details of respiratory support and drug therapy were recorded. Wilcoxon paired signed rank test was used to compare continuous variables between the invasive and non-invasive groups. Fisher's exact test was used to compare binary variables by respiratory support status. Results: 187 infants were eligible for the study at 16 sites. Diuretics were the drug class that most subjects were receiving on the day of study comprising 54% of the entire cohort, followed by inhaled steroids (47%) and short-acting bronchodilators (42%). Infants who were invasively ventilated (verses on non-invasive support) were significantly more likely to be receiving diuretics (p 0.013), short-acting bronchodilators (p < 0.01), long-acting bronchodilators (p < 0.01), systemic steroids (p < 0.01), systemic pulmonary hypertension drugs (p < 0.01), and inhaled nitric oxide (p < 0.01). Conclusion: Infant with severe BPD, especially those who remain on invasive ventilation at 36 weeks, are routinely exposed to multiple drug classes despite insufficient pharmacokinetic, safety, and efficacy evaluations. This study helps prioritize sub-populations, drugs and drug classes for future study.

16.
J Biol Chem ; 295(20): 7075-7095, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277048

RESUMO

Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.


Assuntos
Ataxia , Endossomos , Epilepsia , Doenças Genéticas Ligadas ao Cromossomo X , Deficiência Intelectual , Microcefalia , Mutação de Sentido Incorreto , Transtornos da Motilidade Ocular , Trocadores de Sódio-Hidrogênio , Substituição de Aminoácidos , Animais , Ataxia/genética , Ataxia/metabolismo , Cricetinae , Endossomos/química , Endossomos/genética , Endossomos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/metabolismo , Domínios Proteicos , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
17.
Elife ; 82019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714876

RESUMO

Exposing chicks to one hour of light during the night disrupts the release of a hormone that is needed by cells in the developing brain to survive.


Assuntos
Ritmo Circadiano , Luz , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/efeitos da radiação , Galinhas , Sono , Vigília
18.
PLoS One ; 14(6): e0218036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233568

RESUMO

In the brain, the TrkA receptor for Nerve Growth Factor (NGF) is expressed primarily in the cholinergic system. TrkA/NGF support neuronal health and function, and deficiencies in this axis are associated with progressive cholinergic neuron atrophy and death, and with cognitive deficit in disorders such as Down's syndrome and Alzheimer's disease. These observations led to the hypothesis that TrkA agonists may rescue atrophic cholinergic neurons and benefit cognition. Indeed, a small molecule TrkA partial agonist called D3 normalized TrkA signals and improved memory in cognitive impairment models of ageing and an APP mouse model of Alzheimer's disease. Paradoxically, in young healthy mice chronic delivery of D3 caused impaired memory without impairing learning, a form of anterograde amnesia. Here, we use this as a model to study the mechanisms of impaired memory. In young healthy mice acute or chronic treatment with D3 induces hyperactivation of TrkA-mediated signals in hippocampus, and causes a deficit in hippocampal-dependent memory consolidation proximal to drug exposure, without affecting learning or memory retrieval. The impairment after acute drug exposure is reversible. The impairment after long-term drug exposure is irreversible, likely due to a decrease in hippocampal CA1 neuron basal arborization. These findings support the notion of a homeostatic role for TrkA in memory, and demonstrate the differential outcomes of TrkA (hyper)activation in healthy versus disease states.


Assuntos
Hipocampo/metabolismo , Consolidação da Memória , Receptor trkA/agonistas , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dendritos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Receptor trkA/metabolismo , Memória Espacial
19.
Neurobiol Dis ; 130: 104490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175985

RESUMO

Christianson Syndrome is a rare but increasingly diagnosed X-linked intellectual disability disorder that arises from mutations in SLC9A6/NHE6, a pH-regulating transporter that localizes to early and recycling endosomes. We have recently reported that one of the originally identified disease-causing mutations in NHE6 (p.E287-S288del, or ΔES) resulted in a loss of its pH regulatory function. However, the impact of this mutation upon neuronal synapse formation and plasticity is unknown. Here, we investigate the consequences of the ΔES mutant upon mouse hippocampal pyramidal neurons by expressing a fluorescently-labeled ΔES NHE6 construct into primary hippocampal neurons. Neurons expressing the ΔES mutant showed significant reductions in mature dendritic spine density with a concurrent increase in immature filopodia. Furthermore, compared to wild-type (WT), ΔES-containing endosomes are redirected away from early and recycling endosomes toward lysosomes. In parallel, the ΔES mutant reduced the trafficking of glutamatergic AMPA receptors to excitatory synapses and increased their accumulation within lysosomes for potential degradation. Upon long-term potentiation (LTP), neurons expressing ΔES failed to undergo significant structural and functional changes as observed in controls and WT transfectants. Interestingly, synapse density and LTP-induced synaptic remodeling in ΔES-expressing neurons were partially restored by bafilomycin, a vesicular alkalinisation agent, or by leupeptin, an inhibitor of lysosomal proteolytic degradation. Overall, our results demonstrate that the ∆ES mutation attenuates synapse density and structural and functional plasticity in hippocampal neurons. These deficits may be partially due to the mistargeting of AMPA receptors and other cargos to lysosomes, thereby preventing their trafficking during synaptic remodeling. This mechanism may contribute to the cognitive learning deficits observed in patients with Christianson Syndrome and suggests a potential therapeutic strategy for treatment.


Assuntos
Ataxia/genética , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipocampo/metabolismo , Hipocampo/patologia , Deficiência Intelectual/genética , Microcefalia/genética , Plasticidade Neuronal/genética , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Camundongos , Mutação , Transporte Proteico/genética , Receptores de AMPA/metabolismo
20.
Mol Brain ; 12(1): 19, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866998

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 200 SACS mutations have been identified. Most mutations lead to a complete loss of a sacsin, a large 520 kD protein, although some missense mutations are associated with low levels of sacsin expression. We previously showed that Sacs knock-out mice demonstrate early-onset ataxic phenotype with neurofilament bundling in many neuronal populations. To determine if the preservation of some mutated sacsin protein resulted in the same cellular and behavioral alterations, we generated mice expressing an R272C missense mutation, a homozygote mutation found in some affected patients. Though SacsR272C mice express 21% of wild type brain sacsin and sacsin is found in many neurons, they display similar abnormalities to Sacs knock-out mice, including the development of an ataxic phenotype, reduced Purkinje cell firing rates, and somatodendritic neurofilament bundles in Purkinje cells and other neurons. Together our results support that Sacs missense mutation largely lead to loss of sacsin function.


Assuntos
Ataxia/genética , Ataxia/fisiopatologia , Proteínas de Choque Térmico/genética , Mutação de Sentido Incorreto/genética , Potenciais de Ação , Animais , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Dendritos/metabolismo , Marcação de Genes , Proteínas de Choque Térmico/metabolismo , Homozigoto , Humanos , Filamentos Intermediários/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora , Debilidade Muscular/patologia , Fenótipo , Células de Purkinje/metabolismo , Células de Purkinje/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...