Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321919121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713625

RESUMO

Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.


Assuntos
Padronização Corporal , Planárias , Proteínas Serina-Treonina Quinases , Regeneração , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Regeneração/fisiologia , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Via de Sinalização Wnt/fisiologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
Curr Biol ; 34(2): 352-360.e4, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176417

RESUMO

Although Lepidopteran females build a synaptonemal complex (SC) in pachytene, homologs do not crossover, necessitating an alternative method of homolog conjunction. In Bombyx mori oocytes, the SC breaks down at the end of pachytene, and homolog associations are maintained by a large oocyte-specific structure, which we call the bivalent bridge (BB), connecting paired homologs. The BB is derived from at least some components of the SC lateral elements (LEs). It contains the HORMAD protein HOP1 and the LE protein SYCP2 and is formed by the fusion of the two LE derivatives. As diplotene progresses, the BB increases in width and acquires a layered structure with a thick band of HOP1 separating two layers of SYCP2. The HOP1 interacting protein, PCH2, joins the BB in mid-diplotene, and by late-diplotene, it lies in the middle of the HOP1 filament. This structure is maintained through metaphase I. SYCP2 and PCH2 are lost at anaphase I, and the BB no longer connects the separating homologs. However, a key component of the BB, HOP1, remains at the metaphase I plate. These changes in organization of the BB occur simultaneously with the movement of the kinetochore protein, DSN1, from within the BB at mid-diplotene to the edge of the homologs facing the poles by metaphase I. We view these data in context of models in which SC components and regulators can be repurposed to achieve different functions, a fascinating example of evolution achieving homolog conjunction in an alternative way with recycling of SC proteins.


Assuntos
Bombyx , Complexo Sinaptonêmico , Animais , Feminino , Meiose , Oócitos/metabolismo , Metáfase
3.
Nat Commun ; 14(1): 7947, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040722

RESUMO

The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.


Assuntos
Centrômero , DNA Satélite , Humanos , DNA Satélite/genética , Proteína Centromérica A/genética , Centrômero/metabolismo , Mitose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos
5.
Methods Mol Biol ; 2710: 171-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688732

RESUMO

Spatial transcriptomics maps RNA molecules to the location in a tissue where they are expressed. Here we document the use of Slide-SeqV2 to visualize gene expression in the mouse olfactory bulb (OB). This approach relies on spatially identified beads to locate and quantify individual transcripts. The expression profiles associated with the beads are used to identify and localize individual cell types in an unbiased manner. We demonstrate the various cell types and subtypes with distinct spatial locations in the olfactory bulb that are identified using Slide-SeqV2.


Assuntos
Perfilação da Expressão Gênica , Bulbo Olfatório , Animais , Camundongos
6.
PLoS Genet ; 19(8): e1010854, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639467

RESUMO

Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.


Assuntos
Nucléolo Celular , Divisão do Núcleo Celular , Nucléolo Celular/genética , Ciclo Celular , Proliferação de Células , RNA Polimerase I/genética , RNA Ribossômico/genética
7.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278344

RESUMO

The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.


Assuntos
Placenta , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Placenta/metabolismo , Placentação , Poliploidia , Trofoblastos/metabolismo
8.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214893

RESUMO

The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.

9.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102683

RESUMO

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Assuntos
Proteínas de Homeodomínio , Tretinoína , Camundongos , Animais , Tretinoína/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Tubo Neural/metabolismo , Hibridização in Situ Fluorescente , Elementos Facilitadores Genéticos
10.
iScience ; 26(2): 106001, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866042

RESUMO

Planarians possess naturally occurring pluripotent adult somatic stem cells (neoblasts) required for homeostasis and whole-body regeneration. However, no reliable neoblast culture methods are currently available, hindering mechanistic studies of pluripotency and the development of transgenic tools. We report robust methods for neoblast culture and delivery of exogenous mRNAs. We identify optimal culture media for the short-term maintenance of neoblasts in vitro and show via transplantation that cultured stem cells retain pluripotency for two days. We developed a procedure that significantly improves neoblast yield and purity by modifying standard flow cytometry methods. These methods enable the introduction and expression of exogenous mRNAs in neoblasts, overcoming a key hurdle impeding the application of transgenics in planarians. The advances in cell culture reported here create new opportunities for mechanistic studies of planarian adult stem cell pluripotency, and provide a systematic framework to develop cell culture techniques in other emerging research organisms.

11.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840366

RESUMO

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Assuntos
Sistema Nervoso Simpático , Transcriptoma , Animais , RNA Mensageiro , Hibridização in Situ Fluorescente , Gânglios Simpáticos , Galinhas
12.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
13.
Dev Biol ; 489: 165-177, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35710033

RESUMO

Planarian flatworms are best known for their impressive regenerative capacity, yet this trait varies across species. In addition, planarians have other features that share morphology and function with the tissues of many other animals, including an outer mucociliary epithelium that drives planarian locomotion and is very similar to the epithelial linings of the human lung and oviduct. Planarians occupy a broad range of ecological habitats and are known to be sensitive to changes in their environment. Yet, despite their potential to provide valuable insight to many different fields, very few planarian species have been developed as laboratory models for mechanism-based research. Here we describe a previously undocumented planarian isolate, Girardia sp. (Guanajuato). After collecting this isolate from a freshwater habitat in central Mexico, we characterized it at the morphological, cellular, and molecular level. We show that Girardia sp. (Guanajuato) not only shares features with animals in the Girardia genus but also possesses traits that appear unique to this isolate. By thoroughly characterizing this new planarian isolate, our work facilitates future comparisons to other flatworms and further molecular dissection of the unique and physiologically-relevant traits observed in this Girardia sp. (Guanajuato) isolate.


Assuntos
Planárias , Animais , Ecossistema , Humanos , México , Planárias/genética
14.
Nat Commun ; 13(1): 3494, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715400

RESUMO

The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature's most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices.


Assuntos
Cifozoários , Anêmonas-do-Mar , Animais , Microscopia Eletrônica , Nematocisto/química , Organelas , Anêmonas-do-Mar/genética
15.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108274

RESUMO

Meiotic drivers are parasitic loci that force their own transmission into greater than half of the offspring of a heterozygote. Many drivers have been identified, but their molecular mechanisms are largely unknown. The wtf4 gene is a meiotic driver in Schizosaccharomyces pombe that uses a poison-antidote mechanism to selectively kill meiotic products (spores) that do not inherit wtf4. Here, we show that the Wtf4 proteins can function outside of gametogenesis and in a distantly related species, Saccharomyces cerevisiae. The Wtf4poison protein forms dispersed, toxic aggregates. The Wtf4antidote can co-assemble with the Wtf4poison and promote its trafficking to vacuoles. We show that neutralization of the Wtf4poison requires both co-assembly with the Wtf4antidote and aggregate trafficking, as mutations that disrupt either of these processes result in cell death in the presence of the Wtf4 proteins. This work reveals that wtf parasites can exploit protein aggregate management pathways to selectively destroy spores.


Meiotic drivers are genes that break the normal rules of inheritance. Usually, a gene has a 50% chance of passing on to the next generation. Meiotic drivers force their way into the next generation by poisoning the gametes (the sex cells that combine to form a zygote) that do not carry them. Harnessing the power of genetic drivers could allow scientists to spread beneficial genes across populations. One group of meiotic drivers found in fission yeast is called the 'with transposon fission yeast', or 'wtf' gene family. The wtf drivers act during the production of spores, which are the fission yeast equivalent of sperm, and they encode both a poison that can destroy the spores and its antidote. The poison spreads through the sac holding the spores, and can affect all of them, while the antidote only protects the spores that make it. This means that the spores carrying the wtf genes survive, while the rest of the spores are killed. To understand whether it is possible to use the wtf meiotic drivers to spread other genes, perhaps outside of fission yeast, scientists must first establish exactly how the proteins coded for by genes behave. To do this, Nuckolls et al. examined a member of the wtf family called wtf4. Attaching a fluorescent label to the poison and antidote proteins produced by wtf4 made it possible to see what they do. This revealed that the poison clumps, forming toxic aggregates that damage yeast spores. The antidote works by mopping up these aggregates and moving them to the cell's main storage compartment, called the vacuole. Mutations that disrupted the ability of the antidote to interact with the poison or its ability to move the poison into storage stopped the antidote from working. Nuckolls et al. also showed that if genetic engineering was used to introduce wtf4 into a distantly related species of budding yeast the effects of this meiotic driver were the same. This suggests that the wtf genes may be good candidates for future genetic engineering experiments. Engineered systems known as 'gene drives' could spread beneficial genetic traits through populations. This could include disease-resistance genes in crops, or disease-preventing genes in mosquitoes. The wtf genes are small and work independently of other genes, making them promising candidates for this type of system. These experiments also suggest that the wtf genes could be useful for understanding why clumps of proteins are toxic to cells. Future work could explore why clumps of wtf poison kill spores, while clumps of poison plus antidote do not. This could aid research into human ailments caused by protein clumps, such as Huntington's or Alzheimer's disease.


Assuntos
Morte Celular/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Agregados Proteicos/genética
16.
Elife ; 92020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969790

RESUMO

Two distinct mechanisms for primordial germ cell (PGC) specification are observed within Bilatera: early determination by maternal factors or late induction by zygotic cues. Here we investigate the molecular basis for PGC specification in Nematostella, a representative pre-bilaterian animal where PGCs arise as paired endomesodermal cell clusters during early development. We first present evidence that the putative PGCs delaminate from the endomesoderm upon feeding, migrate into the gonad primordia, and mature into germ cells. We then show that the PGC clusters arise at the interface between hedgehog1 and patched domains in the developing mesenteries and use gene knockdown, knockout and inhibitor experiments to demonstrate that Hh signaling is required for both PGC specification and general endomesodermal patterning. These results provide evidence that the Nematostella germline is specified by inductive signals rather than maternal factors, and support the existence of zygotically-induced PGCs in the eumetazoan common ancestor.


Assuntos
Padronização Corporal/genética , Camadas Germinativas , Proteínas Hedgehog , Anêmonas-do-Mar , Transdução de Sinais/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Células Germinativas/citologia , Células Germinativas/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Estágios do Ciclo de Vida/genética , Masculino , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/crescimento & desenvolvimento
17.
Dev Cell ; 54(3): 333-347.e7, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800293

RESUMO

Cohesin is an evolutionarily conserved chromosome-associated protein complex essential for chromosome segregation, gene expression, and repair of DNA damage. Mutations that affect this complex cause the human developmental disorder Cornelia de Lange syndrome (CdLS), thought to arise from defective embryonic transcription. We establish a significant role for placental defects in the development of CdLS mouse embryos (Nipbl and Hdac8). Placenta is a naturally senescent tissue; we demonstrate that persistent DNA damage potentiates senescence and activates cytokine signaling. Mutant embryo developmental outcomes are significantly improved in the context of a wild-type placenta or by genetically restricting cytokine signaling. Our study highlights that cohesin is required for maintaining ploidy and the repair of spontaneous DNA damage in placental cells, suggesting that genotoxic stress and ensuing placental senescence and cytokine production could represent a broad theme in embryo health and viability.


Assuntos
Dano ao DNA/genética , Síndrome de Cornélia de Lange/genética , Expressão Gênica/genética , Placenta/metabolismo , Animais , Segregação de Cromossomos/genética , Síndrome de Cornélia de Lange/metabolismo , Feminino , Humanos , Camundongos , Mutação/genética , Fenótipo , Gravidez
18.
Front Neuroanat ; 13: 88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636546

RESUMO

A shift in environmental conditions impacts the evolution of complex developmental and behavioral traits. The Mexican cavefish, Astyanax mexicanus, is a powerful model for examining the evolution of development, physiology, and behavior because multiple cavefish populations can be compared to an extant, ancestral-like surface population of the same species. Many behaviors have diverged in cave populations of A. mexicanus, and previous studies have shown that cavefish have a loss of sleep, reduced stress, an absence of social behaviors, and hyperphagia. Despite these findings, surprisingly little is known about the changes in neuroanatomy that underlie these behavioral phenotypes. Here, we use serial sectioning to generate brain atlases of surface fish and three independent cavefish populations. Volumetric reconstruction of serial-sectioned brains confirms convergent evolution on reduced optic tectum volume in all cavefish populations tested. In addition, we quantified volumes of specific neuroanatomical loci within several brain regions that have previously been implicated in behavioral regulation, including the hypothalamus, thalamus, and habenula. These analyses reveal an enlargement of the hypothalamus in all cavefish populations relative to surface fish, as well as subnuclei-specific differences within the thalamus and prethalamus. Taken together, these analyses support the notion that changes in environmental conditions are accompanied by neuroanatomical changes in brain structures associated with behavior. This atlas provides a resource for comparative neuroanatomy of additional brain regions and the opportunity to associate brain anatomy with evolved changes in behavior.

19.
J Cell Biol ; 218(6): 1824-1838, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31088859

RESUMO

Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.


Assuntos
Proteínas 14-3-3/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Fuso Acromático/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Asas de Animais/citologia , Proteínas 14-3-3/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Asas de Animais/metabolismo
20.
J Cell Biol ; 218(5): 1478-1490, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862629

RESUMO

Bipolar spindle formation in yeast requires insertion of centrosomes (known as spindle pole bodies [SPBs]) into fenestrated regions of the nuclear envelope (NE). Using structured illumination microscopy and bimolecular fluorescence complementation, we map protein distribution at SPB fenestrae and interrogate protein-protein interactions with high spatial resolution. We find that the Sad1-UNC-84 (SUN) protein Mps3 forms a ring-like structure around the SPB, similar to toroids seen for components of the SPB insertion network (SPIN). Mps3 and the SPIN component Mps2 (a Klarsicht-ANC-1-Syne-1 domain [KASH]-like protein) form a novel noncanonical linker of nucleoskeleton and cytoskeleton (LINC) complex that is connected in both luminal and extraluminal domains at the site of SPB insertion. The LINC complex also controls the distribution of a soluble SPIN component Bbp1. Taken together, our work shows that Mps3 is a fifth SPIN component and suggests both direct and indirect roles for the LINC complex in NE remodeling.


Assuntos
Centrossomo/metabolismo , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Ciclo Celular , Matriz Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...