Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 015112, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725581

RESUMO

Maintaining the electric fields necessary for the current generation of noble liquid time projection chambers (TPCs), with drift lengths exceeding 1 m, requires a large negative voltage applied to their cathode. Delivering such high voltage is associated with an elevated risk of electrostatic discharge and electroluminescence, which would be detrimental to the performance of the experiment. The Xenon Breakdown Apparatus (XeBrA) is a 5-l, high voltage test chamber built to investigate the contributing factors to electrical breakdown in noble liquids. In this work, we present the main findings after conducting scans over stressed electrode areas, surface finish, pressure, and high voltage ramp speed in the medium of liquid xenon. Area scaling and surface finish were observed to be the dominant factors affecting breakdown, whereas no significant changes were observed with varying pressure or ramp speed. A general rise in both the anode current and photon rate was observed in the last 30 s, leading up to a breakdown, with a marked increase in the last couple of seconds. In addition, the position of breakdowns was reconstructed with a system of high-speed cameras and a moderate correlation with the Fowler-Nordheim field emission model was found. Tentative evidence for bubble nucleation being the originating mechanism of breakdown in the liquid was also observed. We deem the results presented in this work to be of particular interest for the design of future, large TPCs, and practical recommendations are provided.

2.
J Low Temp Phys ; 186(3): 183-196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32669743

RESUMO

We report the first calorimetric detection of individual He 2 ∗ excimers within a bath of superfluid 4 He . The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of ∼ 1 eV , immersed directly in the helium bath. He 2 ∗ excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection (and discrimination) of both states: In the singlet case the calorimeter records the absorption of a prompt ≈ 15 eV photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the ≈ 15 eV , released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization.

3.
Rev Sci Instrum ; 86(9): 093904, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429454

RESUMO

Cryogenic helium-4 has long been recognized as a useful material in fluids research. The unique properties of helium-4 in the gaseous phase and the normal liquid phase allow for the generation of turbulent flows with exceptionally high Reynolds and Rayleigh numbers. In the superfluid phase, helium-4 exhibits two-fluid hydrodynamics and possesses fascinating properties due to its quantum nature. However, studying the flows in helium-4 has been very challenging largely due to the lack of effective visualization and velocimetry techniques. In this article, we discuss the development of novel instrumentation for flow-visualization in helium based on the generation and imaging of thin lines of metastable He*2 tracer molecules. These molecular tracers are created via femtosecond-laser field-ionization of helium atoms and can be imaged using a laser-induced fluorescence technique. By observing the displacement and distortion of the tracer lines in helium, quantitative information about the flow field can be extracted. We present experimental results in the study of thermal counterflow in superfluid helium that validate the concept of this technique. We also discuss anticipated future developments of this powerful visualization technique.

4.
Phys Rev Lett ; 110(17): 175303, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679742

RESUMO

We have studied the interaction of metastable 4He2* excimer molecules with quantized vortices in superfluid 4He in the zero temperature limit. The vortices were generated by either rotation or ion injection. The trapping diameter of the molecules on quantized vortices was found to be 96±6 nm at a pressure of 0.1 bar and 27±5 nm at 5.0 bar. We have also demonstrated that a moving tangle of vortices can carry the molecules through the superfluid helium.

5.
Phys Rev Lett ; 107(5): 051301, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867059

RESUMO

We report results of a search for light (≲10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Assuntos
Radiação Cósmica , Interpretação Estatística de Dados , Elétrons , Física Nuclear , Humanos , Luz , Fótons , Espalhamento de Radiação
6.
Phys Rev Lett ; 105(4): 045301, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867855

RESUMO

Heat is transferred in superfluid 4He via a process known as thermal counterflow. It has been known for many years that above a critical heat current the superfluid component in this counterflow becomes turbulent. It has been suspected that the normal-fluid component may become turbulent as well, but experimental verification is difficult without a technique for visualizing the flow. Here we report a series of visualization studies on the normal-fluid component in a thermal counterflow performed by imaging the motion of seeded metastable helium molecules using a laser-induced-fluorescence technique. We present evidence that the flow of the normal fluid is indeed turbulent at relatively large velocities. Thermal counterflow in which both components are turbulent presents us with a theoretically challenging type of turbulent behavior that is new to physics.

7.
Phys Rev Lett ; 102(23): 235301, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658945

RESUMO

Metastable helium molecules generated in a discharge near a sharp tungsten tip immersed in superfluid 4He are imaged using a laser-induced-fluorescence technique. By pulsing the tip, a small cloud of He(2*) molecules is produced. We can determine the normal-fluid velocity in a heat-induced counterflow by tracing the position of a single molecule cloud. As we run the tip in continuous field-emission mode, a normal-fluid jet from the tip is generated and molecules are entrained in the jet. A focused 910 nm pump laser pulse is used to drive a small group of molecules to the first excited vibrational level of the triplet ground state. Subsequent imaging of the tagged molecules with an expanded 925 nm probe laser pulse allows us to measure the flow velocity of the jet. The techniques we developed provide new tools in quantitatively studying the normal fluid flow in superfluid helium.

8.
Phys Rev Lett ; 101(9): 091301, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851599

RESUMO

XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

9.
Rev Sci Instrum ; 79(3): 031301, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18376990

RESUMO

We describe the design, construction, and performance of three generations of superconducting Ioffe magnetic traps. The first two are low current traps, built from four racetrack shaped quadrupole coils and two solenoid assemblies. Coils are wet wound with multifilament NbTi superconducting wires embedded in epoxy matrices. The magnet bore diameters are 51 and 105 mm with identical trap depths of 1.0 T at their operating currents and at 4.2 K. A third trap uses a high current accelerator-type quadrupole magnet and two low current solenoids. This trap has a bore diameter of 140 mm and tested trap depth of 2.8 T. Both low current traps show signs of excessive training. The high current hybrid trap, on the other hand, exhibits good training behavior and is amenable to quench protection.

10.
Phys Rev Lett ; 100(2): 021303, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232850

RESUMO

The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.

11.
Phys Rev Lett ; 100(2): 025301, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232882

RESUMO

We present data that show a cycling transition can be used to detect and image metastable He2 triplet molecules in superfluid helium. We demonstrate that limitations on the cycling efficiency due to the vibrational structure of the molecule can be mitigated by the use of repumping lasers. Images of the molecules obtained using the method are also shown. This technique gives rise to a new kind of ionizing radiation detector. The use of He2 triplet molecules as tracer particles in the superfluid promises to be a powerful tool for visualization of both quantum and classical turbulence in liquid helium.

12.
Phys Rev Lett ; 95(11): 111101, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16196995

RESUMO

We describe an approach to detecting ionizing radiation that combines the special properties of superfluid helium with the sensitivity of quantum optics techniques. Ionization in liquid helium results in the copious production of metastable He2 molecules, which can be detected by laser-induced fluorescence. Each molecule can be probed many times using a cycling transition, resulting in the detection of individual molecules with high signal to noise. This technique could be used to detect neutrinos, weakly interacting massive particles, and ultracold neutrons, and to image superfluid flow in liquid 4He.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...