Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 2(2): 522-530, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35253001

RESUMO

Polarized or precision targeting of protein complexes to their destinations is fundamental to cellular homeostasis, but the mechanism underpinning directional protein delivery is poorly understood. Here, we use the uropod targeting HIV synapse as a model system to show that the viral assembly machinery Gag is copolarized with the intracellular calcium (Ca2+) gradient and binds specifically with Ca2+. Conserved glutamic/aspartic acids flanking endosomal sorting complexes required for transport binding motifs are major Ca2+ binding sites. Deletion or mutation of these Ca2+ binding residues resulted in altered protein trafficking phenotypes, including (i) changes in the Ca2+-Gag distribution relationship during uropod targeting and/or (ii) defects in homo/hetero-oligomerization with Gag. Mutation of Ca2+ binding amino acids is associated with enhanced ubiquitination and a decline in virion release via uropod protein complex delivery. Our data that show Ca2+-protein binding, via the intracellular Ca2+ gradient, represents a mechanism that regulates intracellular protein trafficking.

3.
J Biol Chem ; 297(6): 101387, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758356

RESUMO

Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.


Assuntos
Aedes/metabolismo , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Tribolium/metabolismo , Aedes/genética , Animais , Proteínas de Insetos/genética , Hormônios Juvenis/metabolismo , Fosforilação , Receptores de Superfície Celular/genética , Células Sf9 , Spodoptera , Tribolium/genética
4.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 267-277, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559614

RESUMO

Tannases are serine esterases that were first discovered in fungi more than one and half centuries ago. They catalyze the hydrolysis of the gallolyl ester bonds in gallotannins to release gallic acid, which is an important intermediate in the chemical and pharmaceutical industries. Since their discovery, fungal tannases have found wide industrial applications, although there is scarce knowledge about these enzymes at the molecular level, including their catalytic and substrate-binding sites. While this lack of knowledge hinders engineering efforts to modify the enzymes, many tannases have been isolated from various fungal strains in a search for the desired enzymatic properties. Here, the first crystal structure of a fungal tannase, that from Aspergillus niger, is reported. The enzyme possesses a typical α/ß-hydrolase-fold domain with a large inserted cap domain, which together form a bowl-shaped hemispherical shape with a surface concavity surrounded by N-linked glycans. Gallic acid is bound at the junction of the two domains within the concavity by forming two hydrogen-bonding networks with neighbouring residues. One is formed around the carboxyl group of the gallic acid and involves residues from the hydrolase-fold domain, including those from the catalytic triad, which consists of Ser206, His485 and Asp439. The other is formed around the three hydroxyl groups of the compound, with the involvement of residues mainly from the cap domain, including Gln238, Gln239, His242 and Ser441. Gallic acid is bound in a sandwich-like mode by forming a hydrophobic contact with Ile442. All of these residues are found to be highly conserved among fungal and yeast tannases.


Assuntos
Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Conformação Proteica
5.
RNA Biol ; 15(7): 923-936, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29954247

RESUMO

The Pr55Gag precursor specifically selects the HIV-1 genomic RNA (gRNA) from a large excess of cellular and partially or fully spliced viral RNAs and drives the virus assembly at the plasma membrane. During these processes, the NC domain of Pr55Gag interacts with the gRNA, while its C-terminal p6 domain binds cellular and viral factors and orchestrates viral particle release. Gag∆p6 is a truncated form of Pr55Gag lacking the p6 domain usually used as a default surrogate for wild type Pr55Gag for in vitro analysis. With recent advance in production of full-length recombinant Pr55Gag, here, we tested whether the p6 domain also contributes to the RNA binding specificity of Pr55Gag by systematically comparing binding of Pr55Gag and Gag∆p6 to a panel of viral and cellular RNAs. Unexpectedly, our fluorescence data reveal that the p6 domain is absolutely required for specific binding of Pr55Gag to the HIV-1 gRNA. Its deletion resulted not only in a decreased affinity for gRNA, but also in an increased affinity for spliced viral and cellular RNAs. In contrast Gag∆p6 displayed a similar affinity for all tested RNAs. Removal of the C-terminal His-tag from Pr55Gag and Gag∆p6 uniformly increased the Kd values of the RNA-protein complexes by ~ 2.5 fold but did not affect the binding specificities of these proteins. Altogether, our results demonstrate a novel role of the p6 domain in the specificity of Pr55Gag-RNA interactions, and strongly suggest that the p6 domain contributes to the discrimination of HIV-1 gRNA from cellular and spliced viral mRNAs, which is necessary for its selective encapsidation.


Assuntos
Genoma Viral/genética , HIV-1/fisiologia , Precursores de Proteínas/metabolismo , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , HIV-1/genética , Humanos , Mutação , Plasmídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de Proteínas/genética , RNA Viral/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743369

RESUMO

Induction of persistent antibody responses by vaccination is generally thought to depend on efficient help by T follicular helper cells. Since the T helper cell response to HIV Env may not be optimal, we explored the possibility of improving the HIV Env antibody response to virus-like particle (VLP) vaccines by recruiting T helper cells induced by commonly used licensed vaccines to provide help for Env-specific B cells. B cells specific for the surface protein of a VLP can internalize the entire VLP and thus present peptides derived from the surface and core proteins on their major histocompatibility complex class II (MHC-II) molecules. This allows T helper cells specific for the core protein to provide intrastructural help for B cells recognizing the surface protein. Consistently, priming mice with an adjuvanted Gag protein vaccine enhanced the HIV Env antibody response to subsequent booster immunizations with HIV VLPs. To harness T helper cells induced by the licensed Tetanolpur vaccines, HIV VLPs that contained T helper cell epitopes of tetanus toxoid were generated. Tetanol-immunized mice raised stronger antibody responses to immunizations with VLPs containing tetanus toxoid T helper cell epitopes but not to VLPs lacking these epitopes. Depending on the priming immunization, the IgG subtype response to HIV Env after the VLP immunization could also be modified. Thus, harnessing T helper cells induced by other vaccines appears to be a promising approach to improve the HIV Env antibody response to VLP vaccines.IMPORTANCE Induction of HIV Env antibodies at sufficient levels with optimal Fc effector functions for durable protection remains a challenge. Efficient T cell help may be essential to induce such a desirable antibody response. Here, we provide proof of concept that T helper cells induced by a licensed vaccine can be harnessed to provide help for HIV Env-specific B cells and to modulate the Env-specific IgG subtype response.


Assuntos
Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Células HEK293 , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação
7.
PLoS Pathog ; 13(2): e1006221, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222188

RESUMO

The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packaging are essential elements that facilitate HIV assembly. However, mechanistic details of these interactions are not clearly defined. Here, we overcome previous limitations in producing large quantities of full-length recombinant Pr55Gag that is required for isothermal titration calorimetry (ITC) studies, and we have revealed the thermodynamic properties of HIV assembly for the first time. Thermodynamic analysis showed that the binding between RNA and HIV Pr55Gag is an energetically favourable reaction (ΔG<0) that is further enhanced by the oligomerization of Pr55Gag. The change in enthalpy (ΔH) widens sequentially from: (1) Pr55Gag-Psi RNA binding during HIV genome selection; to (2) Pr55Gag-Guanosine Uridine (GU)-containing RNA binding in cytoplasm/plasma membrane; and then to (3) Pr55Gag-Adenosine(A)-containing RNA binding in immature HIV. These data imply the stepwise increments of heat being released during HIV biogenesis may help to facilitate the process of viral assembly. By mimicking the interactions between A-containing RNA and oligomeric Pr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag Δp6 is less efficient than full-length Pr55Gag in this thermodynamic process. These data suggest a potential unknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction during HIV assembly. Our data provide direct evidence on how nucleic acid sequences and the oligomeric state of Pr55Gag regulate HIV assembly.


Assuntos
HIV-1/fisiologia , Precursores de Proteínas/química , RNA Viral/química , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Calorimetria , Cromatografia , Imunoprecipitação , Microscopia Eletrônica , Termodinâmica
8.
Stem Cells ; 35(3): 626-640, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28009074

RESUMO

The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas de Membrana/imunologia , Células-Tronco Pluripotentes/metabolismo , Animais , Antígenos de Superfície/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Autorrenovação Celular , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo
9.
Dev Comp Immunol ; 55: 32-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26472619

RESUMO

While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Šby X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A.


Assuntos
Furões/imunologia , Interleucina-2/metabolismo , Linfonodos/imunologia , Viroses/imunologia , Animais , Proliferação de Células , Células Cultivadas , Cristalografia por Raios X , Granzimas/genética , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-2/genética , Linfonodos/patologia , Conformação Proteica , Proteínas Recombinantes/genética , Especificidade da Espécie , Homologia Estrutural de Proteína
10.
Protein Expr Purif ; 116: 19-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26196500

RESUMO

Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay.


Assuntos
Vírus Hendra/química , Vírus Hendra/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Vírus Hendra/genética , Vírus Hendra/ultraestrutura , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Cavalos , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/ultraestrutura , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/ultraestrutura , Suínos
11.
Appl Microbiol Biotechnol ; 99(6): 2663-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25246309

RESUMO

The search for new tannases with novel enzymatic properties suitable for industrial applications has been a continuous effort since the first discovery of the enzyme more than a century ago. A tannase gene (Ss-Tan) from the Gram-positive bacterium Streptomyces sviceus was identified, chemically synthesized, and cloned into a C-terminal His-tagged vector for expression in Escherichia coli. The tannase possesses the active site motif of GXSXG that is conserved for serine hydrolases. The residues that constitute the catalytic triad and galloyl binding site in bacterial tannases are found conserved in Ss-Tan, which include Ser209, Asp452, His484 and Lys370, Glu384, Asp454, respectively. Ss-Tan was overexpressed in E. coli BL21-AI cells with high productivity. Enzymatic assay revealed that the enzyme displays tannase activities to hydrolyze both the ester bonds and depside bonds in hydrolyzable tannins. Kinetic analysis indicated that the enzyme preferentially acts on depside bonds with considerably higher substrate affinity and catalytic efficiency. The enzyme showed maximum activity around pH 8.0 and at 50 °C with the highest melting temperature close to 70 °C. The high depsidase activity and thermostablility of Ss-Tan may make the enzyme suitable for potential industrial applications to achieve complete digestion of hydrolyzable tannins.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Ésteres/química , Streptomyces/enzimologia , Taninos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Especificidade por Substrato
12.
J Virol ; 89(2): 1377-88, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392228

RESUMO

UNLABELLED: Wongabel virus (WONV) is an arthropod-borne rhabdovirus that infects birds. It is one of the growing array of rhabdoviruses with complex genomes that encode multiple accessory proteins of unknown function. In addition to the five canonical rhabdovirus structural protein genes (N, P, M, G, and L), the 13.2-kb negative-sense single-stranded RNA (ssRNA) WONV genome contains five uncharacterized accessory genes, one overlapping the N gene (Nx or U4), three located between the P and M genes (U1 to U3), and a fifth one overlapping the G gene (Gx or U5). Here we show that WONV U3 is expressed during infection in insect and mammalian cells and is required for efficient viral replication. A yeast two-hybrid screen against a mosquito cell cDNA library identified that WONV U3 interacts with the 83-amino-acid (aa) C-terminal domain of SNF5, a component of the SWI/SNF chromatin remodeling complex. The interaction was confirmed by affinity chromatography, and nuclear colocalization was established by confocal microscopy. Gene expression studies showed that SNF5 transcripts are upregulated during infection of mosquito cells with WONV, as well as West Nile virus (Flaviviridae) and bovine ephemeral fever virus (Rhabdoviridae), and that SNF5 knockdown results in increased WONV replication. WONV U3 also inhibits SNF5-regulated expression of the cytokine gene CSF1. The data suggest that WONV U3 targets the SWI/SNF complex to block the host response to infection. IMPORTANCE: The rhabdoviruses comprise a large family of RNA viruses infecting plants, vertebrates, and invertebrates. In addition to the major structural proteins (N, P, M, G, and L), many rhabdoviruses encode a diverse array of accessory proteins of largely unknown function. Understanding the role of these proteins may reveal much about host-pathogen interactions in infected cells. Here we examine accessory protein U3 of Wongabel virus, an arthropod-borne rhabdovirus that infects birds. We show that U3 enters the nucleus and interacts with SNF5, a component of the chromatin remodeling complex that is upregulated in response to infection and restricts viral replication. We also show that U3 inhibits SNF5-regulated expression of the cytokine colony-stimulating factor 1 (CSF1), suggesting that it targets the chromatin remodeling complex to block the host response to infection. This study appears to provide the first evidence of a virus targeting SNF5 to inhibit host gene expression.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Interações Hospedeiro-Patógeno , Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Núcleo Celular/química , Cromatografia de Afinidade , Insetos , Mamíferos , Microscopia Confocal , Técnicas do Sistema de Duplo-Híbrido
13.
Protein Expr Purif ; 100: 10-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24810910

RESUMO

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.


Assuntos
Escherichia coli/genética , Infecções por HIV/virologia , HIV-1/genética , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade/métodos , Expressão Gênica , HIV-1/química , Humanos , Metais/química , Dados de Sequência Molecular , Plasmídeos/genética , Precursores de Proteínas/química , Precursores de Proteínas/ultraestrutura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Solubilidade , Transformação Bacteriana
14.
J Mol Biol ; 425(15): 2737-51, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23648840

RESUMO

Tannins are water-soluble polyphenolic compounds in plants. Hydrolyzable tannins are derivatives of gallic acid (3,4,5-trihydroxybenzoic acid) or its meta-depsidic forms that are esterified to polyol, catechin, or triterpenoid units. Tannases are a family of esterases that catalyze the hydrolysis of the galloyl ester bond in hydrolyzable tannins to release gallic acid. The enzymes have found wide applications in food, feed, beverage, pharmaceutical, and chemical industries since their discovery more than a century ago, although little is known about them at the molecular level, including the details of the catalytic and substrate binding sites. Here, we report the first three-dimensional structure of a tannase from Lactobacillus plantarum. The enzyme displays an α/ß structure, featured by a large cap domain inserted into the classical serine hydrolase fold. A catalytic triad was identified in the structure, which is composed of Ser163, His451, and Asp419. During the binding of gallic acid, the carboxyl group of the molecule forges hydrogen-bonding interactions with the catalytic triad of the enzyme while the three hydroxyl groups make contacts with Asp421, Lys343, and Glu357 to form another hydrogen-bonding network. Mutagenesis studies demonstrated that these residues are indispensable for the activity of the enzyme. Structural studies of the enzyme in complex with a number of substrates indicated that the interactions at the galloyl binding site are the determinant force for the binding of substrates. The single galloyl binding site is responsible for the esterase and depsidase activities of the enzyme.


Assuntos
Hidrolases de Éster Carboxílico/química , Lactobacillus plantarum/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Conformação Proteica , Alinhamento de Sequência
15.
Artigo em Inglês | MEDLINE | ID: mdl-23545659

RESUMO

Tannase catalyses the hydrolysis of the galloyl ester bond of tannins to release gallic acid. It belongs to the serine esterases and has wide applications in the food, feed, beverage, pharmaceutical and chemical industries. The tannase from Lactobacillus plantarum was cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method with microseeding. The crystals belonged to space group P1, with unit-cell parameters a = 46.5, b = 62.8, c = 83.8 Å, α = 70.4, ß = 86.0, γ = 79.4°. Although the enzyme exists mainly as a monomer in solution, it forms a dimer in the asymmetric unit of the crystal. The crystals diffracted to beyond 1.60 Å resolution using synchrotron radiation and a complete data set was collected to 1.65 Å resolution.


Assuntos
Hidrolases de Éster Carboxílico/química , Lactobacillus plantarum/enzimologia , Hidrolases de Éster Carboxílico/isolamento & purificação , Cristalização , Cristalografia por Raios X , Expressão Gênica
16.
Artigo em Inglês | MEDLINE | ID: mdl-23519803

RESUMO

Terminases are enzymes that are required for the insertion of a single viral genome into the interior of a viral procapsid by a process referred to as 'encapsulation or packaging'. Many double-stranded DNA viruses such as bacteriophages T3, T4, T7, λ and SPP1, as well as herpes viruses, utilize terminase enzymes for this purpose. All the terminase enzymes described to date require two subunits, a small subunit referred to as TerS and a large subunit referred to as TerL, for in vivo activity. The TerS and TerL subunits interact with each other to form a functional hetero-oligomeric enzyme complex; however the stoichiometry and oligomeric state have not been determined. We have cloned, expressed and purified recombinant small terminase TerS from a 936 lactococcal bacteriophage strain ASCC454, initially isolated from a dairy factory. The terminase was crystallized using a combination of nanolitre sitting drops and vapour diffusion using sodium malonate as the precipitant, and crystallization optimized using standard vapour-diffusion hanging drops set up in the presence of a nitrogen atmosphere. The crystals belong to the P2 space group, with unit-cell parameters a=73.93, b=158.48, c=74.23 Å, and diffract to 2.42 Šresolution using synchrotron radiation. A self-rotation function calculation revealed that the terminase oligomerizes into an octamer in the asymmetric unit, although size-exclusion chromatography suggests that it is possible for it to form an oligomer of up to 13 subunits.


Assuntos
Bacteriófagos/química , Endodesoxirribonucleases/química , Subunidades Proteicas/química , Proteínas Virais/química , Bacteriófagos/enzimologia , Cristalização , Cristalografia por Raios X , Endodesoxirribonucleases/genética , Escherichia coli/química , Escherichia coli/genética , Lactococcus/virologia , Multimerização Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Virais/genética
17.
J Biol Chem ; 284(23): 15557-63, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19346515

RESUMO

Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an alpha-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.


Assuntos
Especificidade de Anticorpos , AMP Cíclico/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/imunologia , Animais , Sítios de Ligação , Neoplasias Ósseas , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Testes de Neutralização , Osteossarcoma , Conformação Proteica , RNA Mensageiro/genética , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Propriedades de Superfície , Difração de Raios X
18.
Artigo em Inglês | MEDLINE | ID: mdl-19342773

RESUMO

Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 A, and diffracted to 2.0 A resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.


Assuntos
Anticorpos Monoclonais/química , Fragmentos Fab das Imunoglobulinas/química , Proteína Relacionada ao Hormônio Paratireóideo/química , Receptores Acoplados a Proteínas G/química , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Testes de Neutralização , Estrutura Terciária de Proteína
19.
Cell ; 134(3): 496-507, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692472

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Sequência de Aminoácidos , Cristalografia , Humanos , Modelos Moleculares , Dados de Sequência Molecular
20.
Artigo em Inglês | MEDLINE | ID: mdl-18678938

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a haemopoietic growth factor that acts though a ternary receptor signalling complex containing specific alpha (GMRalpha) and common beta (betac) receptor subunits. Human GM-CSF is encoded by the gene csf2, while the genes for GMRalpha and betac are csf2ra and csf2rb, respectively. Crystals of the ternary ectodomain complex comprising GM-CSF and the soluble extracellular regions of both the GMRalpha subunit and either betac or its glutamine-substitution mutant N346Q were obtained using the hanging-drop vapour-diffusion method. The best diffracting crystals of the ternary complex were obtained using the N346Q mutation of the betac subunit. These crystals grew using polyethylene glycol 3350 with a high concentration of proline, belonged to space group P6(3)22 and diffracted to 3.3 A resolution.


Assuntos
Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/química , Cromatografia Líquida de Alta Pressão , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos , Conformação Proteica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...