Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 63(7): e68-e73, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474188

RESUMO

This study assessed the effectiveness of genetic testing in shortening the time to diagnosis of late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease. Individuals who received epilepsy gene panel testing through Behind the Seizure® , a sponsored genetic testing program (Cohort A), were compared to children outside of the sponsored testing program during the same period (Cohort B). Two cohorts were analyzed: children aged ≥24 to ≤60 months with unprovoked seizure onset at ≥24 months between December 2016 and January 2020 (Cohort 1) and children aged 0 to ≤60 months at time of testing with unprovoked seizure onset at any age between February 2019 and January 2020 (Cohort 2). The diagnostic yield in Cohort 1A (n = 1814) was 8.4% (n = 153). The TPP1 diagnostic yield within Cohort 1A was 2.9-fold higher compared to Cohort 1B (1.0%, n = 18/1814 vs. .35%, n = 8/2303; p = .0157). The average time from first symptom to CLN2 disease diagnosis was significantly shorter than previously reported (9.8 vs. 22.7 months, p < .001). These findings indicate that facilitated access to early epilepsy gene panel testing helps to increase diagnostic yield for CLN2 disease and shortens the time to diagnosis, enabling earlier intervention.


Assuntos
Epilepsia , Lipofuscinoses Ceroides Neuronais , Aminopeptidases/genética , Criança , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos , Humanos , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Convulsões/genética , Serina Proteases/genética , Tripeptidil-Peptidase 1
2.
Brain ; 143(4): 1099-1105, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168371

RESUMO

A large fraction of rare and severe neurodevelopmental disorders are caused by sporadic de novo variants. Epidemiological disease estimates are not available for the vast majority of these de novo monogenic neurodevelopmental disorders because of phenotypic heterogeneity and the absence of large-scale genomic screens. Yet, knowledge of disease incidence is important for clinicians and researchers to guide health policy planning. Here, we adjusted a statistical method based on genetic data to predict, for the first time, the incidences of 101 known de novo variant-associated neurodevelopmental disorders as well as 3106 putative monogenic disorders. Two corroboration analyses supported the validity of the calculated estimates. First, greater predicted gene-disorder incidences positively correlated with larger numbers of pathogenic variants collected from patient variant databases (Kendall's τ = 0.093, P-value = 6.9 × 10-6). Second, for six of seven (86%) de novo variant associated monogenic disorders for which epidemiological estimates were available (SCN1A, SLC2A1, SALL1, TBX5, KCNQ2, and CDKL5), the predicted incidence estimates matched the reported estimates. We conclude that in the absence of epidemiological data, our catalogue of 3207 incidence estimates for disorders caused by de novo variants can guide patient advocacy groups, clinicians, researchers, and policymakers in strategic decision-making.


Assuntos
Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Doenças Raras/epidemiologia , Doenças Raras/genética , Variação Genética , Humanos , Incidência
3.
Genome Res ; 29(7): 1144-1151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235655

RESUMO

Recent advances in DNA sequencing have expanded our understanding of the molecular basis of genetic disorders and increased the utilization of clinical genomic tests. Given the paucity of evidence to accurately classify each variant and the difficulty of experimentally evaluating its clinical significance, a large number of variants generated by clinical tests are reported as variants of unknown clinical significance. Population-scale variant databases can improve clinical interpretation. Specifically, pathogenicity prediction for novel missense variants can use features describing regional variant constraint. Constrained genomic regions are those that have an unusually low variant count in the general population. Computational methods have been introduced to capture these regions and incorporate them into pathogenicity classifiers, but these methods have yet to be compared on an independent clinical variant data set. Here, we introduce one variant data set derived from clinical sequencing panels and use it to compare the ability of different genomic constraint metrics to determine missense variant pathogenicity. This data set is compiled from 17,071 patients surveyed with clinical genomic sequencing for cardiomyopathy, epilepsy, or RASopathies. We further use this data set to demonstrate the necessity of disease-specific classifiers and to train PathoPredictor, a disease-specific ensemble classifier of pathogenicity based on regional constraint and variant-level features. PathoPredictor achieves an average precision >90% for variants from all 99 tested disease genes while approaching 100% accuracy for some genes. The accumulation of larger clinical variant training data sets can significantly enhance their performance in a disease- and gene-specific manner.


Assuntos
Cardiomiopatias/genética , Conjuntos de Dados como Assunto , Epilepsia/genética , Variação Genética , Proteínas ras/genética , Humanos , Mutação de Sentido Incorreto
4.
Epilepsia ; 59(5): 1062-1071, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29655203

RESUMO

OBJECTIVE: We evaluated >8500 consecutive, unselected patients with epilepsy and neurodevelopmental disorders who underwent multigene panel testing to determine the average age at molecular diagnosis and diagnostic yield of 70 genes. METHODS: We reviewed molecular test results for 70 genes known to cause epilepsy and neurodevelopmental disorders using next generation sequencing (NGS) and exon-level array comparative genomic hybridization (aCGH). A positive result was defined as the presence of 1 or 2 pathogenic or likely pathogenic (P/LP) variants in a single gene, depending on the mode of inheritance of the associated disorder. RESULTS: Overall, 22 genes were found to have a high yield of positive findings by genetic testing, with SCN1A and KCNQ2 accounting for the greatest number of positive findings. In contrast, there were no positive findings in 16 genes. Most of the P/LP variants were sequence changes identified by NGS (90.9%), whereas ~9% were gross deletions or duplications detected by exon-level aCGH. The mean age of molecular diagnosis for the cohort was 5 years, 8 months (ranging from 1 week to 47 years). Recurrent P/LP variants were observed in 14 distinct genes, most commonly in MECP2, KCNQ2, SCN1A, SCN2A, STXBP1, and PRRT2. Parental testing was performed in >30% of positive cases. All variants identified in CDKL5, STXBP1, SCN8A, GABRA1, and FOXG1 were de novo, whereas 85.7% of variants in PRRT2 were inherited. SIGNIFICANCE: Using a combined approach of NGS and exon-level aCGH, testing identified a genetic etiology in 15.4% of patients in this cohort and revealed the age at molecular diagnosis for patients. Our study highlights both high- and low-yield genes associated with epilepsy and neurodevelopmental disorders, indicating which genes may be considered for molecular diagnostic testing.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Adulto Jovem
5.
Genet Med ; 20(4): 403-410, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28837158

RESUMO

PurposeMosaicism probably represents an underreported cause of genetic disorders due to detection challenges during routine molecular diagnostics. The purpose of this study was to evaluate the frequency of mosaicism detected by next-generation sequencing in genes associated with epilepsy-related neurodevelopmental disorders.MethodsWe conducted a retrospective analysis of 893 probands with epilepsy who had a multigene epilepsy panel or whole-exome sequencing performed in a clinical diagnostic laboratory and were positive for a pathogenic or likely pathogenic variant in one of nine genes (CDKL5, GABRA1, GABRG2, GRIN2B, KCNQ2, MECP2, PCDH19, SCN1A, or SCN2A). Parental results were available for 395 of these probands.ResultsMosaicism was most common in the CDKL5, PCDH19, SCN2A, and SCN1A genes. Mosaicism was observed in GABRA1, GABRG2, and GRIN2B, which previously have not been reported to have mosaicism, and also in KCNQ2 and MECP2. Parental mosaicism was observed for pathogenic variants in multiple genes including KCNQ2, MECP2, SCN1A, and SCN2A.ConclusionMosaic pathogenic variants were identified frequently in nine genes associated with various neurological conditions. Given the potential clinical ramifications, our findings suggest that next-generation sequencing diagnostic methods may be utilized when testing these genes in a diagnostic laboratory.


Assuntos
Epilepsia/genética , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Mosaicismo , Transtornos do Neurodesenvolvimento/genética , Alelos , Substituição de Aminoácidos , Epilepsia/diagnóstico , Estudos de Associação Genética , Testes Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Pais , Sequenciamento do Exoma
6.
J Bone Miner Res ; 27(6): 1309-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22392858

RESUMO

Families with nonsyndromic dentinogenesis imperfecta (DGI) and the milder, dentin dysplasia (DD), have mutations in one allele of the dentin sialophosphoprotein (DSPP) gene. Because loss of a single Dspp allele in mice (and likely, humans) causes no dental phenotype, the mechanism(s) underling the dominant negative effects were investigated. DSPP mutations occur in three classes. (The first class, the mid-leader missense mutation, Y6D, was not investigated in this report.) All other 5' mutations of DSPP result in changes/loss in the first three amino acids (isoleucine-proline-valine [IPV]) of mature DSPP or, for the A15V missense mutation, some retention of the hydrophobic leader sequence. All of this second class of mutations caused mutant DSPP to be retained in the rough endoplasmic reticulum (rER) of transfected HEK293 cells. Trafficking out of the rER by coexpressed normal DSPP was reduced in a dose-responsive manner, probably due to formation of Ca2+-dependent complexes with the retained mutant DSPP. IPV-like sequences begin many secreted Ca2+-binding proteins, and changing the third amino acid to the charged aspartate (D) in three other acidic proteins also caused increased rER accumulation. Both the leader-retaining A15V and the long string of hydrophobic amino acids resulting from all known frameshift mutations within the 3'-encoded Ca2+-binding repeat domain (third class of mutations) caused retention by association of the mutant proteins with rER membranes. More 5' frameshift mutations result in longer mutant hydrophobic domains, but the milder phenotype, DD, probably due to lower effectiveness of the remaining, shorter Ca2+-binding domain in capturing normal DSPP protein within the rER. This study presents evidence of a shared underlying mechanism of capturing of normal DSPP by two different classes of DSPP mutations and offers an explanation for the mild (DD-II) versus severe (DGI-II and III) nonsyndromic dentin phenotypes. Evidence is also presented that many acidic, Ca2+-binding proteins may use the same IPV-like receptor/pathway for exiting the rER.


Assuntos
Displasia da Dentina/metabolismo , Dentinogênese Imperfeita/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Genes Dominantes/genética , Proteínas Mutantes/classificação , Proteínas Mutantes/metabolismo , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Western Blotting , Cromogranina A/metabolismo , Displasia da Dentina/genética , Dentinogênese Imperfeita/genética , Proteínas da Matriz Extracelular/química , Mutação da Fase de Leitura/genética , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Camundongos , Microscopia Confocal , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Fosfoproteínas/química , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Sialoglicoproteínas/química
7.
BMC Evol Biol ; 9: 299, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20030824

RESUMO

BACKGROUND: Dentin sialophosphoprotein (DSPP) is the largest member of the SIBLING family and is the most abundant noncollagenous protein in dentin. DSPP is also expressed in non-mineralized tissues including metabolically active ductal epithelia and some cancers. Its function, however, is poorly defined. The carboxy-terminal fragment, dentin phosphoprotein (DPP) is encoded predominantly by a large repetitive domain that requires separate cloning/sequencing reactions and is, therefore, often incomplete in genomic databases. Comparison of DPP sequences from at least one member of each major branch in the mammalian evolutionary tree (including some "toothless" mammals) as well as one reptile and bird may help delineate its possible functions in both dentin and ductal epithelia. RESULTS: The BMP1-cleavage and translation-termination domains were sufficiently conserved to permit amplification/cloning/sequencing of most species' DPP. While the integrin-binding domain, RGD, was present in about half of species, only vestigial remnants of this tripeptide were identified in the others. The number of tandem repeats of the nominal SerSerAsp phosphorylation motif in toothed mammals (including baleen whale and platypus which lack teeth as adults), ranged from approximately 75 (elephant) to >230 (human). These repeats were not perfect, however, and patterns of intervening sequences highlight the rapidity of changes among even closely related species. Two toothless anteater species have evolved different sets of nonsense mutations shortly after their BMP1 motifs suggesting that while cleavage may be important for DSPP processing in other tissues, the DPP domain itself may be required only in dentin. The lizard DSPP had an intact BMP1 site, a remnant RGD motif, as well as a distinctly different Ser/Asp-rich domain compared to mammals. CONCLUSIONS: The DPP domain of DSPP was found to change dramatically within mammals and was lost in two truly toothless animals. The defining aspect of DPP, the long repeating phosphorylation domain, apparently undergoes frequent slip replication and recombination events that rapidly change specific patterns but not its overall biochemical character in toothed animals. Species may have to co-evolve protein processing mechanisms, however, to handle increased lengths of DSP repeats. While the RGD domain is lost in many species, some evolutionary pressure to maintain integrin binding can be observed.


Assuntos
Dentina/química , Evolução Molecular , Proteínas da Matriz Extracelular/genética , Mamíferos/genética , Sequência de Aminoácidos , Animais , Galinhas/genética , Proteínas da Matriz Extracelular/química , Humanos , Lagartos/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Dente/química
8.
Clin Cancer Res ; 15(16): 5199-207, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19671866

RESUMO

PURPOSE: The small integrin-binding ligand N-linked glycoprotein (SIBLING) gene family includes bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and osteopontin (OPN). Previous studies have separately reported elevated expression of BSP, OPN, or DSPP in prostate tumor paraffin sections. We hypothesized that SIBLINGs may be informative serum markers for subjects with prostate cancer. METHODS: Expression levels of SIBLINGs in biopsies of normal tissue and tumors from prostate were determined by cDNA array and by immunohistochemical staining with monoclonal antibodies. Competitive ELISAs for measuring total BSP, DSPP, MEPE, and OPN were applied to a test group of 102 subjects with prostate cancer and 110 normal subjects and a validation group of 90 subjects. RESULTS: BSP, DMP1, DSPP, and OPN exhibited elevated mRNA expression and protein levels in biopsies. BSP, DSPP, and OPN were elevated in serum from prostate cancer subjects, with serum DSPP exhibiting the greatest difference, yielding an area under the receiver operator characteristic curve value of 0.98. Serum BSP and OPN levels were significantly elevated only in late stages, whereas DSPP was significantly elevated at all stages. Optimal serum value cutoff points derived for BSP, OPN, and DSPP were applied as a validation test to a new group of 90 subjects and DSPP yielded a sensitivity of 90% and a specificity of 100%. CONCLUSION: Of the SIBLING gene family members, DSPP appears to be a strong candidate for use in serum assays for prostate cancer detection.


Assuntos
Proteínas Sanguíneas/análise , Carcinoma/diagnóstico , Integrinas/metabolismo , Neoplasias da Próstata/diagnóstico , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Carcinoma/sangue , Carcinoma/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/análise , Glicoproteínas/genética , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Ligação Proteica , RNA Mensageiro/análise , Sensibilidade e Especificidade
9.
Hum Mutat ; 29(12): 1392-404, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18521831

RESUMO

Within nine dentin dysplasia (DD) (type II) and dentinogenesis imperfecta (type II and III) patient/families, seven have 1 of 4 net -1 deletions within the approximately 2-kb coding repeat domain of the DSPP gene while the remaining two patients have splice-site mutations. All frameshift mutations are predicted to change the highly soluble DSPP protein into proteins with long hydrophobic amino acid repeats that could interfere with processing of normal DSPP and/or other secreted matrix proteins. We propose that all previously reported missense, nonsense, and splice-site DSPP mutations (all associated with exons 2 and 3) result in dominant phenotypes due to disruption of signal peptide-processing and/or related biochemical events that also result in interference with protein processing. This would bring the currently known dominant forms of the human disease phenotype in agreement with the normal phenotype of the heterozygous null Dspp (-/+) mice. A study of 188 normal human chromosomes revealed a hypervariable DSPP repeat domain with extraordinary rates of change including 20 slip-replication indel events and 37 predominantly C-to-T transition SNPs. The most frequent transition in the primordial 9-basepair (bp) DNA repeat was a sense-strand CpG site while a CpNpG (CAG) transition was the second most frequent SNP. Bisulfite-sequencing of genomic DNA showed that the DSPP repeat can be methylated at both motifs. This suggests that, like plants and some animals, humans methylate some CpNpG sequences. Analysis of 37 haplotypes of the highly variable DSPP gene from geographically diverse people suggests it may be a useful autosomal marker in human migration studies.


Assuntos
Displasia da Dentina/genética , Dentinogênese Imperfeita/genética , Proteínas da Matriz Extracelular/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Análise Mutacional de DNA , Humanos , Camundongos , Dados de Sequência Molecular , Fosfoproteínas , Sialoglicoproteínas
10.
J Biol Chem ; 282(42): 30878-88, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17699513

RESUMO

We identified a new extracellular protein, TM14, by differential hybridization using mouse tooth germ cDNA microarrays. TM14 cDNA encodes 440 amino acids containing a signal peptide. The protein contains 3 EGF modules at the center, a C-terminal domain homologous to the fibulin module, and a unique Sushi domain at the N terminus. In situ hybridization revealed that TM14 mRNA was expressed by preodontoblasts and odontoblasts in developing teeth. TM14 mRNA was also expressed in cartilage, hair follicles, and extraembryonic tissues of the placenta. Immunostaining revealed that TM14 was localized at the apical pericellular regions of preodontoblasts. When the dentin matrix was fully formed and dentin mineralization occurred, TM14 was present in the predentin matrix and along the dentinal tubules. We found that the recombinant TM14 protein was glycosylated with N-linked oligosaccharides and interacted with heparin, fibronectin, fibulin-1, and dentin sialophosphoprotein. We also found that TM14 preferentially bound dental mesenchyme cells and odontoblasts but not dental epithelial cells or nondental cells such as HeLa, COS7, or NIH3T3 cells. Heparin, EDTA, and anti-integrin beta1 antibody inhibited TM14 binding to dental mesenchyme cells, suggesting that both a heparan sulfate-containing cell surface receptor and an integrin are involved in TM14 cell binding. Our findings indicate that TM14 is a cell adhesion molecule that interacts with extracellular matrix molecules in teeth and suggest that TM14 plays important roles in both the differentiation and maintenance of odontoblasts as well as in dentin formation. Because of its protein characteristics, TM14 can be classified as a new member of the fibulin family: fibulin-7.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Dentina/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Odontoblastos/metabolismo , Modificação Traducional de Proteínas/fisiologia , Dente/metabolismo , Animais , Células COS , Proteínas de Ligação ao Cálcio/genética , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Chlorocebus aethiops , DNA Complementar/genética , DNA Complementar/metabolismo , Dentina/embriologia , Matriz Extracelular/genética , Glicosilação , Células HeLa , Humanos , Hibridização In Situ , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Família Multigênica/fisiologia , Células NIH 3T3 , Odontoblastos/citologia , Especificidade de Órgãos/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dente/citologia , Dente/embriologia
11.
J Cell Biochem ; 97(2): 288-302, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16173048

RESUMO

The focus of this study was to gain insight into the role(s) of osteonectin in the preferential metastasis of breast cancer cells to bone. Osteonectin was isolated from conditioned media of several cell lines including breast cancer (MDA-MB-435, MDA-MB-468), osteoblasts (hFOB1.19), non-neoplastic breast epithelial (hTERT-HME1), and vascular endothelial cells isolated from a bone biopsy (HBME-1). Chemical/physical properties of osteonectin from these five sources was analyzed to determine if unique configurations of osteonectin exist and therefore identify a chemotactic isoform. Osteonectin from all sources had a molecular weight of approximately 46 kDa, N-linked glycosylation, and undetectable phosphorylated serines, sialic acids and O-linked oligosaccharides. The cDNA for osteonectin from the breast cancer, osteoblast, and breast epithelial cell lines was identical, while the vascular endothelial cell cDNA contained point mutations that resulted in eight amino acid substitutions. Bone-derived osteonectin was then analyzed to assess its influence on breast cancer cell motility and migration. Although osteonectin increased undirected MDA-MB-231 cell motility, it did not chemoattract the same breast cancer cell line. However, the breast cancer cells did migrate toward the known chemoattractant vitronectin and to bone extracts derived from wild-type and osteonectin-null mice. Migration to vitronectin was enhanced when osteonectin was also present. We concluded that osteonectin was not a chemotactic factor. However, through its anti-adhesive properties, osteonectin induced undirected breast cancer cell motility, and may have enhanced chemoattraction to vitronectin.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Osteonectina/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quimiotaxia , DNA Complementar/química , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Osteonectina/genética , Osteonectina/metabolismo , Fosforilação , Vitronectina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...