Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
mBio ; 15(4): e0029824, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38441000

RESUMO

Observational evidence suggests that human milk oligosaccharides (HMOs) promote the growth of commensal bacteria in early life and adulthood. However, the mechanisms by which HMOs benefit health through modulation of gut microbial homeostasis remain largely unknown. 2'-fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and contributes to the essential health benefits associated with human milk consumption. Here, we investigated how 2'-FL prevents colitis in adulthood through its effects on the gut microbial community. We found that the gut microbiota from adult mice that consumed 2'-FL exhibited an increase in abundance of several health-associated genera, including Bifidobacterium and Lactobacillus. The 2'-FL-modulated gut microbial community exerted preventive effects on colitis in adult mice. By using Bifidobacterium infantis as a 2'-FL-consuming bacterial model, exploratory metabolomics revealed novel 2'-FL-enriched secretory metabolites by Bifidobacterium infantis, including pantothenol. Importantly, pantothenate significantly protected the intestinal barrier against oxidative stress and mitigated colitis in adult mice. Furthermore, microbial metabolic pathway analysis identified 26 dysregulated metabolic pathways in fecal microbiota from patients with ulcerative colitis, which were significantly regulated by 2'-FL treatment in adult mice, indicating that 2'-FL has the potential to rectify dysregulated microbial metabolism in colitis. These findings support the contribution of the 2'-FL-shaped gut microbial community and bacterial metabolite production to the protection of intestinal integrity and prevention of intestinal inflammation in adulthood.IMPORTANCEAt present, neither basic research nor clinical studies have revealed the exact biological functions or mechanisms of action of individual oligosaccharides during development or in adulthood. Thus, it remains largely unknown whether human milk oligosaccharides could serve as effective therapeutics for gastrointestinal-related diseases. Results from the present study uncover 2'-FL-driven alterations in bacterial metabolism and identify novel B. infantis-secreted metabolites following the consumption of 2'-FL, including pantothenol. This work further demonstrates a previously unrecognized role of pantothenate in significantly protecting the intestinal barrier against oxidative stress and mitigating colitis in adult mice. Remarkably, 2'-FL-enhanced bacterial metabolic pathways are found to be dysregulated in the fecal microbiota of ulcerative colitis patients. These novel metabolic pathways underlying the bioactivities of 2'-FL may lay a foundation for applying individual oligosaccharides for prophylactic intervention for diseases associated with impaired intestinal homeostasis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ácido Pantotênico/análogos & derivados , Adulto , Humanos , Animais , Camundongos , Leite Humano , Colite Ulcerativa/metabolismo , Oligossacarídeos/metabolismo , Colite/prevenção & controle , Inflamação
2.
J Huntingtons Dis ; 13(1): 103-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461512

RESUMO

Background: Huntington's disease (HD) is a neurodegenerative disorder caused by expanded cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene, resulting in the production of mutant huntingtin proteins (mHTT). Previous research has identified urea as a key metabolite elevated in HD animal models and postmortem tissues of HD patients. However, the relationship between disease course and urea elevations, along with the molecular mechanisms responsible for these disturbances remain unknown. Objective: To better understand the molecular disturbances and timing of urea cycle metabolism across different stages in HD. Methods: We completed a global metabolomic profile of cerebrospinal fluid (CSF) from individuals who were at several stages of disease: pre-manifest (PRE), manifest (MAN), and late manifest (LATE) HD participants, and compared to controls. Results: Approximately 500 metabolites were significantly altered in PRE participants compared to controls, although no significant differences in CSF urea or urea metabolites were observed. CSF urea was significantly elevated in LATE participants only. There were no changes in the urea metabolites citrulline, ornithine, and arginine. Conclusions: Overall, our study confirms that CSF elevations occur late in the HD course, and these changes may reflect accumulating deficits in cellular energy metabolism.


Assuntos
Doença de Huntington , Animais , Humanos , Doença de Huntington/genética , Ureia/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Progressão da Doença
3.
J Am Soc Mass Spectrom ; 35(3): 542-550, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310603

RESUMO

Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.


Assuntos
Metabolômica , Software , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas , Automação
4.
Sci Rep ; 14(1): 343, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172157

RESUMO

Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.


Assuntos
Dislipidemias , Resistência à Insulina , Animais , Feminino , Masculino , Camundongos , Colesterol/metabolismo , Dieta Hiperlipídica , Dislipidemias/genética , Dislipidemias/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos
5.
J Am Soc Mass Spectrom ; 35(2): 214-223, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38215279

RESUMO

The complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses. We have developed a tuning methodology for guiding the efficient operation of a previously developed custom SID device for molecules as small as ca. 300 Da with ion mobility analysis of the fragmentation products. SID fragmentation of the various lipids analyzed was found to generate fragment ions similar to those observed in CID spectra, but fragment ion lab frame onset energies were lower in SID due to the higher energy deposition via a more massive target. For the largest lipid evaluated (cardiolipin 18:1), SID produced chain fragment ions, which yielded analytically useful information regarding the composition of the acyl tails. Ion mobility provided an orthogonal dimension of separation and aided in assigning product ions to their precursors. Overall, the combination of SID and IM-MS is another potential methodology in the analytical toolkit for lipid structural analysis.


Assuntos
Espectrometria de Mobilidade Iônica , Lipídeos , Íons/química , Espectrometria de Massas/métodos
6.
J Am Soc Mass Spectrom ; 35(2): 234-243, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38082535

RESUMO

Ion mobility (IM) is an important analytical technique for increasing identification coverage of metabolites in untargeted studies, especially when integrated into traditional liquid chromatography-mass spectrometry workflows. While there has been extensive work surrounding best practices to obtain and standardize collision cross section (CCS) measurements necessary for comparing across different IM techniques and laboratories, there has been little investigation into experimental factors beyond the mobility separation region that could potentially influence CCS measurements. The first-principles derived CCS of 15 chemical standards were evaluated across 27 aqueous:organic solvent compositions using a high-precision drift tube instrument. A small but measurable dependency of the CCS on the solvent composition was observed, with the larger analytes from this study (m/z > 400) exhibiting a characteristic increase in CCS at the intermediate (40-60%) solvent compositions. Parallels to the behavior of solvent viscosity and protonation site tautomers (protomers) were noted, although the origin of these solvent-dependent CCS trends is as yet unclear. Taken together, these findings document a solvent dependency on CCS, which, while minor (<0.5%), identifies an important need for reporting the solvent system when utilizing CCS in comparative ion mobility studies.

7.
Cell Host Microbe ; 31(10): 1604-1619.e10, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37794592

RESUMO

The mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat (HF) diet, we show that Lactobacillus species, predominant members of the small intestine (SI) microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protects against metabolic dysfunction caused by early-life exposure to antibiotics and a HF diet by increasing the abundance of peroxisome proliferator-activated receptor γ (PPAR-γ) in SI IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestinal epithelium to regulate intestinal lipid metabolism and prevent antibiotic-associated obesity during early life.


Assuntos
Microbiota , Obesidade Infantil , Humanos , Criança , Animais , Camundongos , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Antibacterianos , Poliésteres , Camundongos Endogâmicos C57BL
8.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398141

RESUMO

Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.

9.
Front Endocrinol (Lausanne) ; 14: 1223312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492197

RESUMO

Introduction: We successfully developed a broad spectrum of patient-derived endocrine organoids (PDO) from benign and malignant neoplasms of thyroid, parathyroid, and adrenal glands. In this study, we employed functionally intact parathyroid PDOs from benign parathyroid tissues to study primary hyperparathyroidism (PHPT), a common endocrine metabolic disease. As proof of concept, we examined the utility of parathyroid PDOs for bioenergetic and metabolic screening and assessed whether parathyroid PDO metabolism recapitulated matched PHPT tissues. Methods: Our study methods included a fine-needle aspiration (FNA)-based technique to establish parathyroid PDOs from human PHPT tissues (n=6) in semi-solid culture conditions for organoid formation, growth, and proliferation. Mass spectrometry metabolomic analysis of PHPT tissues and patient-matched PDOs, and live cell bioenergetic profiling of parathyroid PDOs with extracellular flux analyses, were performed. Functional analysis cryopreserved and re-cultured parathyroid PDOs for parathyroid hormone (PTH) secretion was performed using ELISA hormone assays. Results and discussion: Our findings support both the feasibility of parathyroid PDOs for metabolic and bioenergetic profiling and reinforce metabolic recapitulation of PHPT tissues by patient-matched parathyroid PDOs. Cryopreserved parathyroid PDOs exhibited preserved, rapid, and sustained secretory function after thawing. In conclusion, successful utilization of parathyroid PDOs for metabolic profiling further affirms the feasibility of promising endocrine organoid platforms for future metabolic studies and broader multiplatform and translational applications for therapeutic advancements of parathyroid and other endocrine applications.


Assuntos
Glândulas Paratireoides , Glândula Tireoide , Humanos , Glândulas Paratireoides/metabolismo , Biópsia por Agulha Fina/métodos , Organoides
10.
Anal Chem ; 95(21): 8180-8188, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184072

RESUMO

Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, ßCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping (n > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:ßCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K+, Rb+, and Cs+. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:ßCD + X]+ ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:ßCD + Li]+ ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the ßCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.


Assuntos
Artemisininas , Ciclodextrinas , Dextrinas , Espectrometria de Massas em Tandem , Ciclodextrinas/química , Cátions/química
11.
Front Cardiovasc Med ; 10: 1136252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215542

RESUMO

Introduction: Metabolic reprogramming from glycolysis to the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation may mediate macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. We hypothesized that changes in cardiac macrophage glucose metabolism would reflect polarization status after myocardial infarction (MI), ranging from the early inflammatory phase to the later wound healing phase. Methods: MI was induced by permanent ligation of the left coronary artery in adult male C57BL/6J mice for 1 (D1), 3 (D3), or 7 (D7) days. Infarct macrophages were subjected to metabolic flux analysis or gene expression analysis. Monocyte versus resident cardiac macrophage metabolism was assessed using mice lacking the Ccr2 gene (CCR2 KO). Results: By flow cytometry and RT-PCR, D1 macrophages exhibited an M1 phenotype while D7 macrophages exhibited an M2 phenotype. Macrophage glycolysis (extracellular acidification rate) was increased at D1 and D3, returning to basal levels at D7. Glucose oxidation (oxygen consumption rate) was decreased at D3, returning to basal levels at D7. At D1, glycolytic genes were elevated (Gapdh, Ldha, Pkm2), while TCA cycle genes were elevated at D3 (Idh1 and Idh2) and D7 (Pdha1, Idh1/2, Sdha/b). Surprisingly, Slc2a1 and Hk1/2 were increased at D7, as well as pentose phosphate pathway (PPP) genes (G6pdx, G6pd2, Pgd, Rpia, Taldo1), indicating increased PPP activity. Macrophages from CCR2 KO mice showed decreased glycolysis and increased glucose oxidation at D3, and decreases in Ldha and Pkm2 expression. Administration of dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, robustly decreased pyruvate dehydrogenase phosphorylation in the non-infarcted remote zone, but did not affect macrophage phenotype or metabolism in the infarct zone. Discussion: Our results indicate that changes in glucose metabolism and the PPP underlie macrophage polarization following MI, and that metabolic reprogramming is a key feature of monocyte-derived but not resident macrophages.

12.
Analyst ; 148(2): 391-401, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36537590

RESUMO

Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.


Assuntos
Desdobramento de Proteína , Proteínas , Humanos , Reprodutibilidade dos Testes , Proteínas/química , Espectrometria de Massas/métodos , Íons/química
13.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574710

RESUMO

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Lipídeos , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo
14.
mBio ; 13(6): e0296322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468870

RESUMO

Escherichia coli associates with humans early in life and can occupy several body niches either as a commensal in the gut and vagina, or as a pathogen in the urinary tract. As such, E. coli has an arsenal of acid response mechanisms that allow it to withstand the different levels of acid stress encountered within and outside the host. Here, we report the discovery of an additional acid response mechanism that involves the deamination of l-serine to pyruvate by the conserved l-serine deaminases SdaA and SdaB. l-serine is the first amino acid to be imported in E. coli during growth in laboratory media. However, there remains a lack in knowledge as to how l-serine is utilized. Using a uropathogenic strain of E. coli, UTI89, we show that in acidified media, l-serine is brought into the cell via the SdaC transporter. We further demonstrate that deletion of the l-serine deaminases SdaA and SdaB renders E. coli susceptible to acid stress, similar to other acid stress deletion mutants. The pyruvate produced by l-serine deamination activates the pyruvate sensor BtsS, which in concert with the noncognate response regulator YpdB upregulates the putative transporter YhjX. Based on these observations, we propose that l-serine deamination constitutes another acid response mechanism in E. coli. IMPORTANCE The observation that l-serine uptake occurs as E. coli cultures grow is well established, yet the benefit E. coli garners from this uptake remains unclear. Here, we report a novel acid tolerance mechanism where l-serine is deaminated to pyruvate and ammonia, promoting survival of E. coli under acidic conditions. This study is important as it provides evidence of the use of l-serine as an acid response strategy, not previously reported for E. coli.


Assuntos
Proteínas de Escherichia coli , Serina , Escherichia coli Uropatogênica , Feminino , Humanos , Desaminação , Proteínas de Escherichia coli/metabolismo , L-Serina Desidratase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Pirúvico/metabolismo , Serina/metabolismo , Escherichia coli Uropatogênica/metabolismo
15.
Metabolomics ; 18(12): 104, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472678

RESUMO

BACKGROUND: Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW: In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.


Assuntos
Metabolômica
16.
iScience ; 25(11): 105341, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339253

RESUMO

Technological advances have made it feasible to collect multi-condition multi-omic time courses of cellular response to perturbation, but the complexity of these datasets impedes discovery due to challenges in data management, analysis, visualization, and interpretation. Here, we report a whole-cell mechanistic analysis of HL-60 cellular response to bendamustine. We integrate both enrichment and network analysis to show the progression of DNA damage and programmed cell death over time in molecular, pathway, and process-level detail using an interactive analysis framework for multi-omics data. Our framework, Mechanism of Action Generator Involving Network analysis (MAGINE), automates network construction and enrichment analysis across multiple samples and platforms, which can be integrated into our annotated gene-set network to combine the strengths of networks and ontology-driven analysis. Taken together, our work demonstrates how multi-omics integration can be used to explore signaling processes at various resolutions and demonstrates multi-pathway involvement beyond the canonical bendamustine mechanism.

17.
Environ Sci Eur ; 34(1): 104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284750

RESUMO

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

18.
J Am Soc Mass Spectrom ; 33(7): 1229-1237, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653638

RESUMO

Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.


Assuntos
Lipídeos , Calibragem , Íons , Lipídeos/química , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes
19.
NPJ Parkinsons Dis ; 8(1): 84, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768426

RESUMO

We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.

20.
J Am Soc Mass Spectrom ; 33(6): 996-1002, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580025

RESUMO

Previous work has demonstrated that copper complexation strategies can be used with tandem MS (MS/MS) and, more recently, ion mobility-mass spectrometry (IM-MS) to differentiate chiral isomers based upon enantiomeric-specific binding. In this study, we investigate the separation of chiral amino acids (AAs) forming trinuclear complexes that can be directly resolved by IM-MS analyses. Twenty standard AAs of both d- and l-chirality were investigated. Specific AAs including d/l-histidine, d/l-proline, d/l-glutamine, d/l-tyrosine, and d/l-tryptophan were evaluated as "chiral selectors" that, when combined with copper, were found to promote selective complexation with specific AA enantiomers. Significant enantiomer differentiation was observed in the IM spectra for hydrophobic AAs acids with peak-to-peak resolutions ranging from 0.63 to 1.15. Among the chiral selectors investigated, histidine provided the best enantioselectivity, followed by tryptophan, suggesting the aromatic structure plays an important role in forming chiral-specific ion complexes. Unlike MS/MS methods where chiral selectors with l-stereochemistry enhance the differentiation, the chirality of the selector was found to have no significant effect on observed IM separation with both d- and l-selectors providing similar resolutions but with inverted IM arrival time ordering. To investigate the structural differences between resolvable chiral complexes, a combination of MS/MS, collision cross-section (CCS) measurements, and molecular mechanics techniques was used. Candidate trinuclear structures of the stoichiometry [(Cu2+)3(d/lIle)3(lHis)2 - 5H]+ were constructed with guidance from empirical MS/MS results. Of the 48 theoretical structures generated, one enantiomeric cluster pair yielded close correlation (<1%) with experimental CCS measurements, suggesting the most enantioselective ion complexes observed in this work are bridged by three coppers.


Assuntos
Aminoácidos , Cobre , Aminoácidos/química , Cobre/química , Histidina/química , Espectrometria de Mobilidade Iônica , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...