Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Rep ; 14(1): 4775, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413790

RESUMO

In the quest to unravel the mysteries of neurological diseases, comprehending the underlying mechanisms is supreme. The SH-SY5Y human neuroblastoma cell line serves as a crucial tool in this endeavor; however, the cells are known for its sensitivity and slow proliferation rates. Typically, this cell line is cultured with 10% Fetal Bovine Serum (FBS) supplement. Nu-Serum (NuS), a low-protein alternative to FBS, is promising to advance cell culture practices. Herein, we evaluated the substitution of NuS for FBS to test the hypothesis that an alternative serum supplement can aid and promote SH-SY5Y cell proliferation and differentiation. Our findings revealed that the NuS-supplemented group exhibited a notable increase in adhered cells compared to both the FBS and serum-free (SF) groups. Importantly, cell viability remained high in both sera treated groups, with the NuS-supplemented cells displaying significantly larger cell sizes compared to the SF-treated group. Furthermore, cell proliferation rates were higher in the NuS-treated group, and neuroblast-like morphology was observed earlier than FBS group. Notably, both FBS and NuS supported the differentiation of these cells into mature neurons. Our data supports NuS as an alternative for SH-SY5Y cell culture, with the potential to elevate the quality of research in the neuroscience field.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Diferenciação Celular , Proliferação de Células , Meios de Cultura/farmacologia
2.
Alzheimers Dement ; 20(3): 2298-2308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265159

RESUMO

Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.


Assuntos
Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/terapia
3.
Biomedicines ; 11(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893236

RESUMO

Lewy body dementia (LBD) is an often misdiagnosed and mistreated neurodegenerative disorder clinically characterized by the emergence of neuropsychiatric symptoms followed by motor impairment. LBD falls within an undefined range between Alzheimer's disease (AD) and Parkinson's disease (PD) due to the potential pathogenic synergistic effects of tau, beta-amyloid (Aß), and alpha-synuclein (αsyn). A lack of reliable and relevant animal models hinders the elucidation of the molecular characteristics and phenotypic consequences of these interactions. Here, the goal was to evaluate whether the viral-mediated overexpression of αsyn in adult hTau and APP/PS1 mice or the overexpression of tau in Line 61 hThy1-αsyn mice resulted in pathology and behavior resembling LBD. The transgenes were injected intravenously via the tail vein using AAV-PHP.eB in 3-month-old hThy1-αsyn, hTau, or APP/PS1 mice that were then aged to 6-, 9-, and 12-months-old for subsequent phenotypic and histological characterization. Although we achieved the widespread expression of αsyn in hTau and tau in hThy1-αsyn mice, no αsyn pathology in hTau mice and only mild tau pathology in hThy1-αsyn mice was observed. Additionally, cognitive, motor, and limbic behavior phenotypes were not affected by overexpression of the transgenes. Furthermore, our APP/PS1 mice experienced premature deaths starting at 3 months post-injection (MPI), therefore precluding further analyses at later time points. An evaluation of the remaining 3-MPI indicated no αsyn pathology or cognitive and motor behavioral changes. Taken together, we conclude that the overexpression of αsyn in hTau and APP/PS1 mice and tau in hThy1-αsyn mice does not recapitulate the behavioral and neuropathological phenotypes observed in LBD.

4.
Stem Cell Res Ther ; 14(1): 289, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798772

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRSL274G) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. METHODS: We used CRISPR/Cas9 homology-directed repair to stably integrate MetRSL274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRSL274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRSL274G-expressing iMSCs with naïve or lipopolysaccharide (LPS)-treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. RESULTS: Our results showed successful integration of MetRSL274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRSL274G-expressing iMSCs can be differentiated from that of THP-1 cells in co-culture and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. CONCLUSIONS: The MetRSL274G-based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.


Assuntos
Células-Tronco Mesenquimais , Metionina tRNA Ligase , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Lipopolissacarídeos , Secretoma , Células-Tronco Mesenquimais/metabolismo , Aminoácidos
5.
Acta Neuropathol ; 146(5): 685-705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740734

RESUMO

Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Camundongos Endogâmicos C57BL , Mutagênese , DNA
6.
Front Aging Neurosci ; 15: 1179086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637959

RESUMO

Background: Intracytoplasmic inclusions comprised of aggregated alpha-synuclein (αsyn) represent a key histopathological feature of neurological disorders collectively termed "synucleinopathies," which includes Parkinson's disease (PD). Mutations and multiplications in the SNCA gene encoding αsyn cause familial forms of PD and a large body of evidence indicate a correlation between αsyn accumulation and disease. Decreasing αsyn expression is recognized as a valid target for PD therapeutics, with down-regulation of SNCA expression potentially attenuating downstream cascades of pathologic events. Here, we evaluated if Honokiol (HKL), a polyphenolic compound derived from magnolia tree bark with demonstrated neuroprotective properties, can modulate αsyn levels in multiple experimental models. Methods: Human neuroglioma cells stably overexpressing αsyn, mouse primary neurons, and human iPSC-derived neurons were exposed to HKL and αsyn protein and SNCA messenger RNA levels were assessed. The effect of HKL on rotenone-induced overexpression of αsyn levels was further assessed and transcriptional profiling of mouse cortical neurons treated with HKL was performed to identify potential targets of HKL. Results: We demonstrate that HKL can successfully reduce αsyn protein levels and SNCA expression in multiple in vitro models of PD with our data supporting a mechanism whereby HKL acts by post-transcriptional modulation of SNCA rather than modulating αsyn protein degradation. Transcriptional profiling of mouse cortical neurons treated with HKL identifies several differentially expressed genes (DEG) as potential targets to modulate SNCA expression. Conclusion: This study supports a HKL-mediated downregulation of SNCA as a viable strategy to modify disease progression in PD and other synucleinopathies. HKL has potential as a powerful tool for investigating SNCA gene modulation and its downstream effects.

7.
FASEB Bioadv ; 5(7): 263-276, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415931

RESUMO

Parkinson's disease (PD) is a complex, multifactorial neurodegenerative disease with a prevalence of 1% over the age of 55. Neuropathological hallmarks of PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of Lewy bodies that contain a variety of proteins and lipids including alpha-synuclein (α-syn). Although the formation of α-syn occurs intracellularly, it can also be found in the extracellular space where it can be taken up by neighboring cells. Toll-like receptor 2 (TLR2) is an immune system receptor that has been shown to recognize extracellular α-syn and modulate its uptake by other cells. Lymphocyte-activation gene 3 (LAG3), an immune checkpoint receptor, has also been proposed to play a role in extracellular α-syn internalization; however, a recent study has disputed this role. Internalized α-syn can trigger expression and secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, IL-2, and IL-6 and induce neuroinflammation, apoptosis, and mitophagy that results in cellular death. In this study, we tested if N-acetylcysteine (NAC), an anti-inflammatory and anti-carcinogenic drug, can circumvent the detrimental effects of neuroinflammation and induce an anti-inflammatory response by modulating transcription and expression of TLR2 and LAG3 receptors. Cells overexpressing wild-type α-syn were treated with TNF-α to induce inflammation followed by NAC to inhibit the deleterious effects of TNF-α-induced inflammation and apoptosis. SNCA gene transcription and α-syn protein expression were validated by q-PCR and Western blot (WB), respectively. Cell viability was measured, and apoptosis was evaluated by WB and terminal deoxynucleotidyl transferase nick end labeling methods. Alterations in LAG3 and TLR2 receptor levels were evaluated by immunofluorescent labeling, WB, and q-PCR. TNF-α not only increased inflammation but also increased endogenous and overexpressed α-syn levels. NAC treatment decreased expression of TLR2 and increased transcription of LAG3 receptor and diminished inflammation-mediated toxicity and cell death. Here, we demonstrate that NAC can reduce neuroinflammation that occurs as a result of alpha-synuclein overexpression, via a TLR2-associated pathway, making it a promising candidate for therapeutic intervention. Further studies are needed to elucidate molecular mechanisms and pathways related to neuroinflammation in PD and to develop possible new therapeutic approaches to slow the clinical progression of PD.

8.
Brain Pathol ; 33(5): e13175, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259617

RESUMO

Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Mitofagia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ubiquitina/metabolismo , Ubiquitina/farmacologia , Ubiquitina-Proteína Ligases/genética
9.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205579

RESUMO

Background Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRS L274G ) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. Methods We used CRISPR/Cas9 homology-directed repair to stably integrate MetRS L274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRS L274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRS L274G -expressing iMSCs with naïve or lipopolysaccharide- (LPS) treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. Results Our results showed successful integration of MetRS L274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRS L274G -expressing iMSCs can be differentiated from that of THP-1 cells in co-culture, and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. Conclusions The MetRS L274G -based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.

10.
Ann Neurol ; 93(4): 830-843, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546684

RESUMO

OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doença dos Neurônios Motores , Humanos , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Apolipoproteína E2/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E3 , Gliose/genética , Proteínas de Ligação a DNA/genética , Apolipoproteínas E/genética , Degeneração Lobar Frontotemporal/patologia
11.
J Parkinsons Dis ; 12(8): 2353-2367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502340

RESUMO

Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.


Assuntos
Doença de Parkinson , Humanos , Pessoa de Meia-Idade , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação , Mitocôndrias/patologia , Movimento , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806091

RESUMO

Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.


Assuntos
Catepsina B/metabolismo , Doença de Parkinson , Catepsina B/genética , Genótipo , Heterozigoto , Humanos , Doença de Parkinson/genética , Penetrância
13.
Acta Neuropathol ; 143(6): 641-662, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35471463

RESUMO

Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-ß (Aß) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aß40, Aß42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Células-Tronco Pluripotentes Induzidas , Doença por Corpos de Lewy , Síndromes Neurotóxicas , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
14.
Gut Microbes ; 13(1): 1866974, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459114

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized primarily by motor and non-motor gastrointestinal (GI) deficits. GI symptoms' including compromised intestinal barrier function often accompanies altered gut microbiota composition and motor deficits in PD. Therefore, in this study, we set to investigate the role of gut microbiota and epithelial barrier dysfunction on motor symptom generation using a rotenone-induced mouse model of PD. We found that while six weeks of 10 mg/kg of chronic rotenone administration by oral gavage resulted in loss of tyrosine hydroxylase (TH) neurons in both germ-free (GF) and conventionally raised (CR) mice, the decrease in motor strength and coordination was observed only in CR mice. Chronic rotenone treatment did not disrupt intestinal permeability in GF mice but resulted in a significant change in gut microbiota composition and an increase in intestinal permeability in CR mice. These results highlight the potential role of gut microbiota in regulating barrier dysfunction and motor deficits in PD.


Assuntos
Gastroenteropatias/patologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Doença de Parkinson/patologia , Rotenona/toxicidade , Junções Íntimas/patologia , Animais , Eixo Encéfalo-Intestino , Modelos Animais de Doenças , Disbiose/microbiologia , Distúrbios Distônicos/congênito , Distúrbios Distônicos/patologia , Feminino , Vida Livre de Germes/fisiologia , Masculino , Camundongos , Junções Íntimas/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
15.
J Neurotrauma ; 38(5): 655-664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32935624

RESUMO

Traumatic brain injury (TBI) is traditionally characterized by primary and secondary injury phases, both contributing to pathological and morphological changes. The mechanisms of damage and chronic consequences of TBI remain to be fully elucidated, but synaptic homeostasis disturbances and impaired energy metabolism are proposed to be a major contributor. It has been proposed that an increase of extracellular (eATP) adenosine triphosphate (ATP) in the area immediately surrounding impact may play a pivotal role in this sequence of events. After tissue injury, rupture of cell membranes allows release of intracellular ATP into the extracellular space, triggering a cascade of toxic events and inflammation. ATP is a ubiquitous messenger; however, simple and reliable techniques to measure its concentration have proven elusive. Here, we integrate a sensitive bioluminescent eATP sensor known as pmeLUC, with a controlled cortical impact mouse model to monitor eATP changes in a living animal after injury. Using the pmeLUC probe, a rapid increase of eATP is observed proximal to the point of impact within minutes of the injury. This event is significantly attenuated when animals are pretreated with an ATP hydrolyzing agent (apyrase) before surgery, confirming the contribution of eATP. This new eATP reporter could be useful for understanding the role of eATP in the pathogenesis in TBI and may identify a window of opportunity for therapeutic intervention.


Assuntos
Trifosfato de Adenosina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Espaço Extracelular/metabolismo , Animais , Apirase , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Valor Preditivo dos Testes , Fatores de Tempo
16.
Parkinsonism Relat Disord ; 78: 138-144, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32829096

RESUMO

INTRODUCTION: The microtubule-associated protein tau (MAPT) gene is considered a strong genetic risk factor for Parkinson's disease (PD) in Caucasians. MAPT is located within an inversion region of high linkage disequilibrium designated as H1 and H2 haplotype, and contains eight other genes which have been implicated in neurodegeneration. The aim of the current study was to identify common coding variants in strong linkage disequilibrium (LD) within the associated loci on chr17q21 harboring MAPT. METHODS: Sanger sequencing of coding exons in 90 Caucasian late-onset PD (LOPD) patients was performed. Specific gene sequencing for LRRC37A, LRRC37A2, ARL17A and ARL17B was not possible given the high homology, presence of pseudogenes and copy number variants that are in the region, and therefore four genes (NSF, KANSL1, SPPL2C, and CRHR1) were included in the analysis. Coding variants from these four genes that did not perfectly tag (r2 = 1) the MAPT H1/H2 haplotype were genotyped in an independent replication series of Caucasian PD cases (N = 851) and controls (N = 730). RESULTS: In the 90 LOPD cases we identified 30 coding variants. Eleven non-synonymous variants tagged the MAPT H1/H2 haplotype, including two SPPL2C variants (rs12185233 and rs12373123) that had high pathogenic combined annotation dependent depletion (CADD) scores of >20. In the replication series, the non-synonymous KANSL1 rs17585974 variant was in very strong LD with MAPT H1/H2 and had a high CADD score of 24.7. CONCLUSION: We have identified several non-synonymous variants across neighboring genes of MAPT that may warrant further genetic and functional investigation within the biological etiology of PD.


Assuntos
Cromossomos Humanos Par 17/genética , Doença de Parkinson/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico Endopeptidases/genética , Estudos de Coortes , Loci Gênicos , Haplótipos , Humanos , Desequilíbrio de Ligação , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Nucleares/genética , Análise de Sequência de DNA , População Branca
17.
Sci Transl Med ; 12(529)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024798

RESUMO

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease mainly by driving amyloid-ß pathology. Recently, APOE4 has also been found to be a genetic risk factor for Lewy body dementia (LBD), which includes dementia with Lewy bodies and Parkinson's disease dementia. How APOE4 drives risk of LBD and whether it has a direct effect on α-synuclein pathology are not clear. Here, we generated a mouse model of synucleinopathy using an adeno-associated virus gene delivery of α-synuclein in human APOE-targeted replacement mice expressing APOE2, APOE3, or APOE4. We found that APOE4, but not APOE2 or APOE3, increased α-synuclein pathology, impaired behavioral performances, worsened neuronal and synaptic loss, and increased astrogliosis at 9 months of age. Transcriptomic profiling in APOE4-expressing α-synuclein mice highlighted altered lipid and energy metabolism and synapse-related pathways. We also observed an effect of APOE4 on α-synuclein pathology in human postmortem brains with LBD and minimal amyloid pathology. Our data demonstrate a pathogenic role of APOE4 in exacerbating α-synuclein pathology independent of amyloid, providing mechanistic insights into how APOE4 increases the risk of LBD.


Assuntos
Apolipoproteína E4 , Doença por Corpos de Lewy/genética , Sinucleinopatias , alfa-Sinucleína , Peptídeos beta-Amiloides , Animais , Apolipoproteína E4/genética , Camundongos , Camundongos Knockout para ApoE , Sinucleinopatias/genética
18.
Mol Neurodegener ; 15(1): 5, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931835

RESUMO

BACKGROUND: Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD. METHODS: The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue. RESULTS: Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner. CONCLUSIONS: Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Sirtuína 3/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley
19.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775051

RESUMO

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
20.
Ann Neurol ; 86(4): 593-606, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343083

RESUMO

OBJECTIVE: Excessive inflammation in the central nervous system (CNS) and the periphery can result in neurodegeneration and parkinsonism. Recent evidence suggests that immune responses in Parkinson disease patients are dysregulated, leading to an increased inflammatory reaction to unspecific triggers. Although α-synuclein pathology is the hallmark of Parkinson disease, it has not been investigated whether pathologic α-synuclein is a specific trigger for excessive inflammatory responses in Parkinson disease. METHODS: We investigated the immune response of primary human monocytes and a microglial cell line to pathologic forms of α-synuclein by assessing cytokine release upon exposure. RESULTS: We show that pathologic α-synuclein (mutations, aggregation) results in a robust inflammatory activation of human monocytes and microglial BV2 cells. The activation is conformation- dependent, with increasing fibrillation and early onset mutations having the strongest effect on immune activation. We also found that activation of immune cells by extracellular α-synuclein is potentiated by extracellular vesicles, possibly by facilitating the uptake of α-synuclein. Blood extracellular vesicles from Parkinson disease patients induce a stronger activation of monocytes than blood extracellular vesicles from healthy controls. Most importantly, monocytes from Parkinson disease patients are dysregulated and hyperactive in response to stimulation with pathologic α-synuclein. Furthermore, we demonstrate that α-synuclein pathology in the CNS is sufficient to induce the monocyte dysregulation in the periphery of a mouse model. INTERPRETATION: Taken together, our data suggest that α-synuclein pathology and dysregulation of monocytes in Parkinson disease can act together to induce excessive inflammatory responses to α-synuclein. ANN NEUROL 2019;86:593-606.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Doença de Parkinson/imunologia , alfa-Sinucleína/efeitos adversos , Animais , Células Cultivadas , Vesículas Extracelulares/imunologia , Humanos , Inflamação/complicações , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Mutação , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...