Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Immunol ; 14: 1272699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885878

RESUMO

Neutrophils are a specialized subset of white blood cells, which have the ability to store pre-formed mediators in their cytoplasmic granules. Neutrophils are well-known effector cells involved in host protection against pathogens through diverse mechanisms such as phagocytosis, degranulation, extracellular traps, and oxidative burst. In this study, we provide evidence highlighting the significance of the SNARE proteins syntaxin-4 and synaptosomal-associated protein (SNAP) 23 in the release of azurophilic granules, specific granules, and the production of reactive oxygen species in human neutrophils. In contrast, the specific blockade of either syntaxin-4 or SNAP23 did not prevent the release of mitochondrial dsDNA in the process of neutrophil extracellular trap (NET) formation. These findings imply that degranulation and the release of mitochondrial dsDNA involve at least partially distinct molecular pathways in neutrophils.


Assuntos
Armadilhas Extracelulares , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Humanos , DNA Mitocondrial/metabolismo , Exocitose , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
2.
Immunol Rev ; 314(1): 50-68, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36424898

RESUMO

Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.


Assuntos
Neutrófilos , Transdução de Sinais , Humanos , Receptores Mitogênicos/metabolismo , Lectinas Tipo C/metabolismo
3.
Front Immunol ; 13: 879686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711435

RESUMO

Neutrophils play a significant role in determining disease severity following SARS-CoV-2 infection. Gene and protein expression defines several neutrophil clusters in COVID-19, including the emergence of low density neutrophils (LDN) that are associated with severe disease. The functional capabilities of these neutrophil clusters and correlation with gene and protein expression are unknown. To define host defense and immunosuppressive functions of normal density neutrophils (NDN) and LDN from COVID-19 patients, we recruited 64 patients with severe COVID-19 and 26 healthy donors (HD). Phagocytosis, respiratory burst activity, degranulation, neutrophil extracellular trap (NET) formation, and T-cell suppression in those neutrophil subsets were measured. NDN from severe/critical COVID-19 patients showed evidence of priming with enhanced phagocytosis, respiratory burst activity, and degranulation of secretory vesicles and gelatinase and specific granules, while NET formation was similar to HD NDN. COVID LDN response was impaired except for enhanced NET formation. A subset of COVID LDN with intermediate CD16 expression (CD16Int LDN) promoted T cell proliferation to a level similar to HD NDN, while COVID NDN and the CD16Hi LDN failed to stimulate T-cell activation. All 3 COVID-19 neutrophil populations suppressed stimulation of IFN-γ production, compared to HD NDN. We conclude that NDN and LDN from COVID-19 patients possess complementary functional capabilities that may act cooperatively to determine disease severity. We predict that global neutrophil responses that induce COVID-19 ARDS will vary depending on the proportion of neutrophil subsets.


Assuntos
COVID-19 , Armadilhas Extracelulares , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo , Explosão Respiratória , SARS-CoV-2
4.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638548

RESUMO

CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor's expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.


Assuntos
Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Multimerização Proteica/genética , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamação/genética , Lectinas Tipo C/biossíntese , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Fosforilação , Domínios Proteicos/genética , Transporte Proteico/genética , Receptores Mitogênicos/biossíntese , Transdução de Sinais/imunologia
5.
Front Immunol ; 12: 650808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234773

RESUMO

The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.


Assuntos
Lectinas Tipo C/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Mitogênicos/imunologia , Transdução de Sinais/imunologia , Adulto , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Microscopia Confocal , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986193

RESUMO

SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.


Assuntos
Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/etiologia , COVID-19/sangue , COVID-19/complicações , Neutrófilos/imunologia , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/imunologia , COVID-19/imunologia , Citocinas/sangue , Feminino , Proteínas Ligadas por GPI/sangue , Hospitalização , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Neutrófilos/classificação , Pandemias , Fagocitose , Ativação Plaquetária , Receptores de IgG/sangue , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Índice de Gravidade de Doença
7.
J Clin Med ; 10(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669337

RESUMO

Kidney involvement in systemic lupus erythematosus (SLE)-termed lupus nephritis (LN)-is a severe manifestation of SLE that can lead to end-stage kidney disease (ESKD). LN is characterized by immune complex deposition and inflammation in the glomerulus. We tested the hypothesis that autoantibodies targeting podocyte and glomerular cell proteins contribute to the development of immune complex formation in LN. We used Western blotting with SLE sera from patients with and without LN to identify target antigens in human glomerular and cultured human-derived podocyte membrane proteins. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified the proteins in the gel regions corresponding to reactive bands observed with sera from LN patients. We identified 102 proteins that were present in both the podocyte and glomerular samples. We identified 10 high-probability candidates, including moesin, using bioinformatic analysis. Confirmation of moesin as a target antigen was conducted using immunohistochemical analysis (IHC) of kidney biopsy tissue and enzyme-linked immunosorbent assay (ELISA) to detect circulating antibodies. By IHC, biopsies from patients with proliferative lupus nephritis (PLN, class III/IV) demonstrated significantly increased glomerular expression of moesin (p < 0.01). By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against moesin (p < 0.01). This suggests that moesin is a target glomerular antigen in lupus nephritis.

8.
J Leukoc Biol ; 109(4): 793-806, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946637

RESUMO

Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are "custom made," acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis.


Assuntos
Vesículas Extracelulares/metabolismo , Inflamação/patologia , Neutrófilos/metabolismo , Adulto , Coagulação Sanguínea , Vesículas Extracelulares/ultraestrutura , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-8/metabolismo , Masculino , Neutrófilos/ultraestrutura , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
9.
J Am Soc Nephrol ; 31(8): 1883-1904, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561683

RESUMO

BACKGROUND: The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS: ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS: Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS: ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.


Assuntos
Proteínas da Matriz Extracelular/análise , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/metabolismo , Proteômica/métodos , Catepsinas/fisiologia , Células Epiteliais/fisiologia , Humanos , Imuno-Histoquímica , Glomérulos Renais/química , Microscopia Confocal
10.
J Leukoc Biol ; 107(3): 393-408, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990103

RESUMO

Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.


Assuntos
Exocitose , Terapia de Alvo Molecular , Neutrófilos/citologia , Animais , Grânulos Citoplasmáticos/metabolismo , Doença , Humanos , Proteínas SNARE/metabolismo
11.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730851

RESUMO

Epithelial ovarian cancer (EOC) often presents with metastases and ascites. Granulocytic myeloid-derived suppressor cells are an immature population that impairs antitumor immunity. Since suppressive granulocytes in the ascites of patients with newly diagnosed EOC were morphologically mature, we hypothesized that PMN were rendered suppressive in the tumor microenvironment (TME). Circulating PMN from patients were not suppressive but acquired a suppressor phenotype (defined as ≥1 log10 reduction of anti-CD3/CD28-stimulated T cell proliferation) after ascites supernatant exposure. Ascites supernatants (20 of 31 supernatants) recapitulated the suppressor phenotype in PMN from healthy donors. T cell proliferation was restored with ascites removal and restimulation. PMN suppressors also inhibited T cell activation and cytokine production. PMN suppressors completely suppressed proliferation in naive, central memory, and effector memory T cells and in engineered tumor antigen-specific cytotoxic T lymphocytes, while antigen-specific cell lysis was unaffected. Inhibition of complement C3 activation and PMN effector functions, including CR3 signaling, protein synthesis, and vesicular trafficking, abrogated the PMN suppressor phenotype. Moreover, malignant effusions from patients with various metastatic cancers also induced the C3-dependent PMN suppressor phenotype. These results point to PMN impairing T cell expansion and activation in the TME and the potential for complement inhibition to abrogate this barrier to antitumor immunity.


Assuntos
Imunidade , Neutrófilos/imunologia , Neoplasias Ovarianas/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Idoso , Antígenos CD28 , Proliferação de Células , Complemento C3 , Citocinas , Feminino , Granulócitos , Humanos , Ativação Linfocitária/imunologia , Muromonab-CD3 , Células Supressoras Mieloides/imunologia , Neoplasias Ovarianas/patologia
12.
Am J Physiol Renal Physiol ; 315(3): F595-F606, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790391

RESUMO

Acute glomerulonephritis is characterized by rapid glomerular neutrophil recruitment, proteinuria, and glomerular hypercellularity. The current study tested the hypothesis that the release of neutrophil granule contents plays a role in both the loss of filtration barrier leading to proteinuria and the increase in glomerular cells. Inhibition of neutrophil exocytosis with a peptide inhibitor prevented proteinuria and attenuated podocyte and endothelial cell injury but had no effect on glomerular hypercellularity in an experimental acute glomerulonephritis model in mice. Cultivation of podocytes with neutrophil granule contents disrupted cytoskeletal organization, an in vitro model for podocyte effacement and loss of filtration barrier. Activated, cultured podocytes released cytokines that stimulated neutrophil chemotaxis, primed respiratory burst activity, and stimulated neutrophil exocytosis. We conclude that crosstalk between podocytes and neutrophils contributes to disruption of the glomerular filtration barrier in acute glomerulonephritis. Neutrophil granule products induce podocyte injury but do not participate in the proliferative response of intrinsic glomerular cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Doença Antimembrana Basal Glomerular/metabolismo , Comunicação Celular , Exocitose , Taxa de Filtração Glomerular , Neutrófilos/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Citoesqueleto de Actina/patologia , Animais , Doença Antimembrana Basal Glomerular/patologia , Doença Antimembrana Basal Glomerular/fisiopatologia , Doença Antimembrana Basal Glomerular/prevenção & controle , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Exocitose/efeitos dos fármacos , Feminino , Produtos do Gene tat/farmacologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/patologia , Proteinúria/fisiopatologia , Proteinúria/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Explosão Respiratória , Proteínas SNARE/farmacologia
13.
BMC Nephrol ; 19(1): 102, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720115

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common post-cardiac surgery complication and influences patient morbidity and prognosis. This study was designed to identify preoperative candidate urine biomarkers in patients undergoing cardiac surgery. METHODS: A prospective cohort study of adults undergoing cardiac surgery at increased risk for AKI at a single hospital between July 2010 and September 2012 was performed. The primary outcome was the development of AKI, defined as an absolute serum creatinine (SCr) level increase ≥ 0.5 mg/dL or a ≥ 50% relative increase within 72 h of surgery. A secondary outcome was development of AKI defined by Kidney Disease Improving Global Outcomes (KDIGO). Urine collected by voiding within 4 h prior to surgery was used for proteomic analysis and confirmatory enzyme linked immunosorbent assays (ELISAs) studies. Biomarkers were tested for AKI-prediction using Cox and Snell R2, area under the receiver operating curve (AUROC), and percent of corrected classifications. To evaluate the added effect of each candidate biomarker on AKI discrimination, receiver operator characteristic (ROC) curves, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were calculated. RESULTS: Forty-seven of 755 patients met screening criteria including 15 with AKI. Proteomic analysis identified 29 proteins with a significant ≥2-fold change. Confirmatory ELISA measurements of five candidate markers showed urinary complement factor B (CFB) and histidine rich glycoprotein (HRG) concentrations were significantly increased in patients with AKI. By multivariate analysis, NRI, and IDI the addition of CFB and HRG to the standard clinical assessment significantly improved risk prediction for the primary outcome. Only HRG was a significant predictor in the 21 patients with AKI defined by KDIGO criteria. CONCLUSIONS: Pre-operative urine measurement of CFB or HRG significantly enhanced the current post-surgery AKI risk stratification for more restrictive definition of AKI. HRG, but not CFB or clinical risk stratification, predicted AKI defined by KDIGO. The ability of these biomarkers to predict risk for dialysis-requiring AKI or death could not be reliably assessed in our study due to a small number of patients with either outcome.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/urina , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/urina , Injúria Renal Aguda/epidemiologia , Idoso , Biomarcadores/urina , Procedimentos Cirúrgicos Cardíacos/tendências , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco
14.
Am J Pathol ; 187(12): 2799-2810, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935578

RESUMO

Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glomerulonefrite/patologia , NF-kappa B/metabolismo , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Glomerulonefrite/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Mutantes
15.
Inflamm Res ; 66(10): 891-899, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28638979

RESUMO

OBJECTIVE AND DESIGN: Neutrophil generation of reactive oxygen species (ROS) is enhanced by exposure to pro-inflammatory agents in a process termed priming. Priming is depending on exocytosis of neutrophil granules and p47phox phosphorylation-dependent translocation of cytosolic NADPH oxidase components. Clathrin-mediated endocytosis was recently reported to be necessary for priming, but the mechanism linking endocytosis to priming was not identified. The present study examined the hypothesis that endocytosis regulates neutrophil priming by controlling granule exocytosis. MATERIALS AND METHODS: Clathrin-mediated endocytosis by isolated human neutrophils was inhibited by chlorpromazine, monodansylcadaverine, and sucrose. Exocytosis of granule subsets was measured as release of granule components by ELISA or chemiluminescence. ROS generation was measured as extracellular release of superoxide as reduction of ferrocytochrome c. p38 MAPK activation and p47phox phosphorylation were measured by immunoblot analysis. Statistical analysis was performed using a one-way ANOVA with the Tukey-Kramer multiple-comparison test. RESULTS: Inhibition of endocytosis prevented priming of superoxide release by TNFα and inhibited TNFα stimulation and priming of exocytosis of all four granule subsets. Inhibition of endocytosis did not reduce TNFα-stimulated p38 MAPK activation or p47phox phosphorylation. Inhibition of NADPH oxidase activity blocked TNFα stimulation of secretory vesicle and gelatinase granule exocytosis. CONCLUSIONS: Endocytosis is linked to priming of respiratory burst activity through ROS-mediated control of granule exocytosis.


Assuntos
Endocitose/fisiologia , Exocitose/fisiologia , Neutrófilos/fisiologia , Explosão Respiratória/fisiologia , Clatrina/farmacologia , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Am Soc Nephrol ; 28(8): 2275-2289, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620081

RESUMO

Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.


Assuntos
Glomerulonefrite/imunologia , Neutrófilos/fisiologia , Imunidade Adaptativa , Animais , Glomerulonefrite/microbiologia , Humanos , Imunidade Inata , Infiltração de Neutrófilos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28611952

RESUMO

Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.


Assuntos
Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Apoptose/imunologia , Apoptose/fisiologia , Adesão Celular/imunologia , Quimiocinas/metabolismo , Quimiotaxia/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Exocitose/imunologia , Armadilhas Extracelulares/imunologia , Vesículas Extracelulares , Humanos , Imunidade Inata/imunologia , Metabolismo dos Lipídeos , NADPH Oxidases/metabolismo , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia
18.
J Leukoc Biol ; 102(1): 19-29, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28096297

RESUMO

Neutrophil granule exocytosis plays an important role in innate and adaptive immune responses. The present study examined TNF-α stimulation or priming of exocytosis of the 4 neutrophil granule subsets. TNF-α stimulated exocytosis of secretory vesicles and gelatinase granules and primed specific and azurophilic granule exocytosis to fMLF stimulation. Both stimulation and priming of exocytosis by TNF-α were dependent on p38 MAPK activity. Bioinformatic analysis of 1115 neutrophil proteins identified by mass spectrometry as being phosphorylated by TNF-α exposure found that actin cytoskeleton regulation was a major biologic function. A role for p38 MAPK regulation of the actin cytoskeleton was confirmed experimentally. Thirteen phosphoproteins regulated secretory vesicle quantity, formation, or release, 4 of which-Raf1, myristoylated alanine-rich protein kinase C (PKC) substrate (MARCKS), Abelson murine leukemia interactor 1 (ABI1), and myosin VI-were targets of the p38 MAPK pathway. Pharmacologic inhibition of Raf1 reduced stimulated exocytosis of gelatinase granules and priming of specific granule exocytosis. We conclude that differential regulation of exocytosis by TNF-α involves the actin cytoskeleton and is a necessary component for priming of the 2 major neutrophil antimicrobial defense mechanisms: oxygen radical generation and release of toxic granule contents.


Assuntos
Exocitose/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Vesículas Secretórias/imunologia , Fator de Necrose Tumoral alfa/imunologia , Citoesqueleto de Actina/imunologia , Exocitose/efeitos dos fármacos , Gelatinases/imunologia , Humanos , Lipoilação/efeitos dos fármacos , Lipoilação/imunologia , Proteína Quinase C/imunologia , Proteínas Proto-Oncogênicas c-abl/imunologia , Proteínas Proto-Oncogênicas c-raf/imunologia , Fator de Necrose Tumoral alfa/farmacologia , alfa-Defensinas/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
19.
Kidney Int ; 91(2): 501-511, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988214

RESUMO

Abnormal extracellular matrix (ECM) remodeling is a prominent feature of many glomerular diseases and is a final common pathway of glomerular injury. However, changes in ECM composition accompanying disease-related remodeling are unknown. The physical properties of ECM create challenges for characterization of composition using standard protein extraction techniques, as the insoluble components of ECM are frequently discarded and many ECM proteins are in low abundance compared to other cell proteins. Prior proteomic studies defining normal ECM composition used a large number of glomeruli isolated from human kidneys retrieved for transplantation or by nephrectomy for cancer. Here we examined the ability to identify ECM proteins by mass spectrometry using glomerular sections compatible with those available from standard renal biopsy specimens. Proteins were classified as ECM by comparison to the Matrisome database and previously identified glomerular ECM proteins. Optimal ECM protein identification resulted from sequential decellularization and protein extraction of 100 human glomerular sections isolated by laser capture microdissection from either frozen or formalin-fixed, paraffin-embedded tissue. In total, 147 ECM proteins were identified, including the majority of structural and GBM proteins previously identified along with a number of matrix and glomerular basement membrane proteins not previously associated with glomeruli. Thus, our study demonstrates the feasibility of proteomic analysis of glomerular ECM from retrieved glomerular sections isolated from renal biopsy tissue and expands the list of known ECM proteins in glomeruli.


Assuntos
Proteínas da Matriz Extracelular/análise , Matriz Extracelular/química , Membrana Basal Glomerular/química , Nefropatias/metabolismo , Microdissecção e Captura a Laser , Proteômica/métodos , Biomarcadores/análise , Biópsia , Bases de Dados de Proteínas , Matriz Extracelular/patologia , Estudos de Viabilidade , Fixadores , Formaldeído , Secções Congeladas , Membrana Basal Glomerular/patologia , Humanos , Nefropatias/diagnóstico , Espectrometria de Massas , Inclusão em Parafina , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fixação de Tecidos/métodos
20.
J Immunol ; 196(11): 4477-86, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183592

RESUMO

Ab maturation as well as memory B and plasma cell differentiation occur primarily in the germinal centers (GCs). Systemic lupus erythematosus (SLE) may develop as a result of enhanced GC activity. Previous studies have shown that the dysregulated STAT3 pathway is linked to lupus pathogenesis. However, the exact role of STAT3 in regulating SLE disease progression has not been fully understood. In this study, we demonstrated that STAT3 signaling in B cells is essential for GC formation and maintenance as well as Ab response. Increased cell apoptosis and downregulated Bcl-xL and Mcl-1 antiapoptotic gene expression were found in STAT3-deficient GC B cells. The follicular helper T cell response positively correlated with GC B cells and was significantly decreased in immunized B cell STAT3-deficient mice. STAT3 deficiency also led to the defect of plasma cell differentiation. Furthermore, STAT3 deficiency in autoreactive B cells resulted in decreased autoantibody production. Results obtained from B cell STAT3-deficient B6.MRL/lpr mice suggest that STAT3 signaling significantly contributes to SLE pathogenesis by regulation of GC reactivity, autoantibody production, and kidney pathology. Our findings provide new insights into the role of STAT3 signaling in the maintenance of GC formation and GC B cell differentiation and identify STAT3 as a novel target for treatment of SLE.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...