Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(9): 1697-1707, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36916761

RESUMO

Host ranges of plant viruses are poorly known, as studies have focused on pathogenic viruses in crops and adjacent wild plants. High-throughput sequencing (HTS) avoids the bias toward plant-virus interactions that result in disease. Here we study the host ranges of tobamoviruses, important pathogens of crops, using HTS analyses of an extensive sample of plant communities in four habitats of a heterogeneous ecosystem. Sequences of 17 virus operational taxonomic units (OTUs) matched references in the Tobamovirus genus, eight had narrow host ranges, and five had wide host ranges. Regardless of host range, the OTU hosts belonged to taxonomically distant families, suggesting no phylogenetic constraints in host use associated with virus adaptation, and that tobamoviruses may be host generalists. The OTUs identified as tobacco mild green mosaic virus (TMGMV), tobacco mosaic virus (TMV), pepper mild mottle virus, and Youcai mosaic virus had the largest realized host ranges that occurred across habitats and exhibited host use unrelated to the degree of human intervention. This result is at odds with assumptions that contact-transmitted viruses would be more abundant in crops than in wild plant communities and could be explained by effective seed-, contact-, or pollinator-mediated transmission or by survival in the soil. TMGMV and TMV had low genetic diversity that was not structured according to habitat or host plant taxonomy, which indicated that phenotypic plasticity allows virus genotypes to infect new hosts with no need for adaptive evolution. Our results underscore the relevance of ecological factors in host range evolution, in addition to the more often studied genetic factors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Humanos , Especificidade de Hospedeiro , Ecossistema , Doenças das Plantas , Tobamovirus/genética , Vírus do Mosaico do Tabaco/genética , Plantas , Variação Genética
2.
Virus Evol ; 8(2): veac095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405340

RESUMO

The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.

3.
J Evol Biol ; 34(12): 1917-1931, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32618008

RESUMO

The evolution and diversification of ssRNA plant viruses are often examined under reductionist conditions that ignore potentially much wider biotic interactions. The host range of a plant virus is central to interactions at higher levels that are organized by both fitness and ecological criteria. Here we employ a strategy to minimize sampling biases across distinct plant communities and combine it with a high-throughput sequencing approach to examine the influence of four habitats on the evolution of Watermelon mosaic virus (WMV). Local, regional and global levels of genetic diversity that correspond to spatial and temporal extents are used to infer haplotype relationships using network and phylogenetic approaches. We find that the incidence and genetic diversity of WMV were structured significantly by host species and habitat type. A single haplotype that infected 11 host species of a total of 24 showed that few constraints on host species use exist in the crop communities. When the evolution of WMV was examined at broader levels of organization, we found variation in genetic diversity and contrasting host use footprints that broadly corresponded to habitat effects. The findings demonstrated that nondeterministic ecological factors structured the genetic diversity of WMV. Habitat-driven constraints underlie host use preferences.


Assuntos
Especificidade de Hospedeiro , Vírus de Plantas , Filogenia , Doenças das Plantas , Plantas
4.
Phytopathology ; 111(1): 32-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210987

RESUMO

The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.


Assuntos
Metagenômica , Vírus de Plantas , Ecologia , Ecossistema , Doenças das Plantas , Vírus de Plantas/genética
5.
J Med Chem ; 63(22): 13878-13898, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33147410

RESUMO

The enzyme phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) catalyzes the final step in the biosynthesis of epinephrine and is a potential drug target, primarily for the control of hypertension. Unfortunately, many potent PNMT inhibitors also possess significant affinity for the a2-adrenoceptor, which complicates the interpretation of their pharmacology. A bisubstrate analogue approach offers the potential for development of highly selective inhibitors of PNMT. This paper documents the design, synthesis, and evaluation of such analogues, several of which were found to possess human PNMT (hPNMT) inhibitory potency <5 nM versus AdoMet. Site-directed mutagenesis studies were consistent with bisubstrate binding. Two of these compounds (19 and 29) were co-crystallized with hPNMT and the resulting structures revealed both compounds bound as predicted, simultaneously occupying both substrate binding domains. This bisubstrate inhibitor approach has resulted in one of the most potent (20) and selective (vs the a2-adrenoceptor) inhibitors of hPNMT yet reported.


Assuntos
Adenosina/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Isoquinolinas/metabolismo , Feniletanolamina N-Metiltransferase/química , Feniletanolamina N-Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina/química , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Domínios Proteicos , Relação Estrutura-Atividade
6.
Beilstein J Org Chem ; 15: 145-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745990

RESUMO

Thiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions. Many are involved in stereospecific carbon-carbon bond formation and, consequently, have found increasing interest and utility as chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the activated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of the individual reactions. In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and (R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation, provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent enzymes, and, potentially, for the use of unnatural substrates in such reactions.

7.
Curr Opin Virol ; 34: 50-55, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30654270

RESUMO

Changes in host range are central to virus emergence. Host range, together with its evolution, is determined by virus intrinsic factors, such as genetic traits determining its fitness in different hosts. Experimental analyses have shown the relevance in host range evolution of across-host fitness trade-offs. Host range is also determined by ecological factors extrinsic to the virus such as the distribution, abundance, and interaction of species, and understanding their role in host range evolution is a current challenge. Indeed, intrinsic and extrinsic factors, and the complexity of biotic and abiotic interactions, must be considered in order to provide generalisations on patterns of transmission, host range evolution, and disease emergence. This exciting new field of research is still in its infancy.


Assuntos
Evolução Molecular , Especificidade de Hospedeiro , Vírus de Plantas/genética , Meio Ambiente , Aptidão Genética , Virulência
8.
Front Chem ; 6: 205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998094

RESUMO

Density functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.

9.
Adv Virus Res ; 101: 293-339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29908592

RESUMO

The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.


Assuntos
Evolução Biológica , Ecossistema , Especificidade de Hospedeiro/genética , Vírus de Plantas/genética , Biota , Aptidão Genética , Modelos Estatísticos , Vírus de Plantas/fisiologia , Plantas/virologia , Fatores de Tempo
10.
Bioorg Med Chem ; 25(16): 4368-4374, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28693916

RESUMO

Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.


Assuntos
Bacteroides fragilis/enzimologia , Carboxiliases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piruvatos/farmacologia , Carboxiliases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Piruvatos/síntese química , Piruvatos/química , Relação Estrutura-Atividade
11.
Virus Res ; 241: 68-76, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554561

RESUMO

Understanding host-pathogen interactions requires analyses to address the multiplicity of scales in heterogeneous landscapes. Anthropogenic influence on plant communities, especially cultivation, is a major cause of environmental heterogeneity. We have approached the analysis of how environmental heterogeneity determines plant-virus interactions by studying virus infection in a wild plant currently undergoing incipient domestication, the wild pepper or chiltepin, across its geographical range in Mexico. We have shown previously that anthropogenic disturbance is associated with higher infection and disease risk, and with disrupted patterns of host and virus genetic spatial structure. We now show that anthropogenic factors, species richness, host genetic diversity and density in communities supporting chiltepin differentially affect infection risk according to the virus analysed. We also show that in addition to these factors, a broad range of abiotic and biotic variables meaningful to continental scales, have an important role on the risk of infection depending on the virus. Last, we show that natural virus infection of chiltepin plants in wild communities results in decreased survival and fecundity, hence negatively affecting fitness. This important finding paves the way for future studies on plant-virus co-evolution.


Assuntos
Capsicum/virologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Biodiversidade , Ecossistema , Variação Genética/genética , México
12.
Protein Eng Des Sel ; 30(3): 271-278, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338942

RESUMO

Benzaldehyde dehydrogenase from Pseudomonas putida (PpBADH) belongs to the Class 3 aldehyde dehydrogenase (ALDH) family. The Class 3 ALDHs are unusual in that they are generally dimeric (rather than tetrameric), relatively non-specific and utilize both NAD+ and NADP+. To date, X-ray structures of three Class 3 ALDHs have been determined, of which only two have cofactor bound, both in the NAD+ form. Here we report the crystal structure of PpBADH in complex with NADP+ and a thioacyl intermediate adduct. The overall architecture of PpBADH resembles that of most other members of the ALDH superfamily, and the cofactor binding residues are well conserved. Conversely, the pattern of cofactor binding for the rat Class 3 ALDH differs from that of PpBADH and other ALDHs. This has been interpreted in terms of a different mechanism for the rat enzyme. Comparison with the PpBADH structure, as well as multiple sequence alignments, suggest that one of two conserved glutamates, at positions 215 (209 in rat) and 337 (333 in rat), would act as the general base necessary to hydrolyze the thioacyl intermediate. While the latter is the general base in the rat Class 3 ALDH, site-specific mutagenesis indicates that Glu215 is the likely candidate for PpBADH, a result more typical of the Class 1 and 2 ALDH families. Finally, this study shows that hydride transfer is not rate limiting, lending further credence to the suggestion that PpBADH is more similar to the Class 1 and 2 ALDHs than it is to other Class 3 ALDHs.


Assuntos
Aldeído Oxirredutases/química , NADP/química , Pseudomonas putida/enzimologia , Aldeído Oxirredutases/genética , Substituição de Aminoácidos , Animais , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , NADP/genética , Domínios Proteicos , Pseudomonas putida/genética , Ratos
13.
Arch Biochem Biophys ; 618: 23-31, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28129982

RESUMO

The best-studied amidase signature (AS) enzyme is probably fatty acid amide hydrolase (FAAH). Closely related to FAAH is mandelamide hydrolase (MAH), whose substrate specificity and mechanism of catalysis are described in this paper. First, we developed a convenient chromogenic substrate, 4-nitrophenylacetamide, for MAH. The lack of reactivity of MAH with the corresponding ethyl ester confirmed the very limited size of the MAH leaving group site. The reactivity of MAH with 4-nitrophenyl acetate and methyl 4-nitrophenyl carbonate, therefore, suggested formation of an "inverse" acyl-enzyme where the small acyl-group occupies the normal leaving group site. We have interpreted the specificity of MAH for phenylacetamide substrates and small leaving groups in terms of its active site structure, using a homology model based on a FAAH crystal structure. The relevant structural elements were compared with those of FAAH. Phenylmethylboronic acid is a potent inhibitor of MAH (Ki = 27 nM), presumably because it forms a transition state analogue structure with the enzyme. O-Acyl hydroxamates were not irreversible inactivators of MAH but some were found to be transient inhibitors.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Hidrolases/química , Ácidos Hidroxâmicos/química , Ácidos Mandélicos/química , Sítios de Ligação , Carbonatos/química , Catálise , Domínio Catalítico , Cristalização , Hidrólise , Cinética , Conformação Molecular , Mutagênese Sítio-Dirigida , Nitrofenóis/química , Pseudomonas putida/enzimologia , Especificidade por Substrato
14.
Biochim Biophys Acta ; 1854(8): 1001-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936776

RESUMO

Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate. It is the penultimate enzyme in both the mandelate pathway and the d-phenylglycine degradation pathway. The ThDP-dependent Enzyme Engineering Database (TEED) now lists more than 800 sequences annotated as BFDCs, including one from Mycobacterium smegmatis (MsBFDC). However, there is no evidence that either pathway for benzoylformate formation exists in the M. smegmatis genome. Further, sequence alignments of MsBFDC with the well characterized enzyme isolated from Pseudomonas putida (PpBFDC) indicate that there will be active site substitutions in MsBFDC likely to reduce activity with benzoylformate. Taken together these data would suggest that the annotation is unlikely to be correct. To test this hypothesis the putative MsBFDC was cloned, expressed, purified, and the X-ray structure was solved to a resolution of 2.2Å. While showing no evidence for ThDP in the active site, the structure was very similar to that of PpBFDC. A number of 2-oxo acids were tested as substrates. For MsBFDC the K(m) value for benzoylformate was ~23 mM, nearly 100-fold greater than that of PpBFDC while the k(cat) value was reduced 60-fold. These values would suggest that benzoylformate is not the physiological substrate for this enzyme, and that annotation as a 2-oxo acid decarboxylase may be more appropriate.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Glioxilatos/química , Ácidos Mandélicos/química , Mycobacterium smegmatis/enzimologia , Tiamina Pirofosfato/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glioxilatos/metabolismo , Cinética , Ácidos Mandélicos/metabolismo , Mycobacterium smegmatis/genética , Tiamina Pirofosfato/metabolismo
15.
Angew Chem Int Ed Engl ; 53(52): 14402-6, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25382418

RESUMO

ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant.


Assuntos
Hidrolases/metabolismo , Tiamina Pirofosfato/química , Substituição de Aminoácidos , Azoarcus/enzimologia , Benzoína/química , Biocatálise , Carbono/química , Domínio Catalítico , Cicloexanonas/química , Cicloexanonas/metabolismo , Hidrolases/química , Hidrolases/genética , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Tiamina Pirofosfato/metabolismo
16.
Biochemistry ; 53(27): 4358-67, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24956165

RESUMO

The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer-monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer-tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Proteínas de Bactérias/genética , Carboxiliases/genética , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Desnaturação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Pseudomonas putida/enzimologia
17.
Biochemistry ; 53(13): 2145-52, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24628377

RESUMO

Identification of enzyme-bound intermediates via their spectroscopic signatures, which then allows direct monitoring of the kinetic fate of these intermediates, poses a continuing challenge. As an electrophilic covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a number of noncovalent and covalent intermediates along its reaction pathways, and multiple UV-vis and circular dichroism (CD) bands have been identified at Rutgers pertinent to several among them. These electronic transitions fall into two classes: those for which the conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated system and the observed CD bands are best ascribed to charge transfer (CT) transitions. Herein is reported the reaction of four ThDP enzymes with alternate substrates: (a) acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.


Assuntos
Piruvato Descarboxilase/metabolismo , Tiamina Pirofosfato/metabolismo , Tiamina/metabolismo , Dicroísmo Circular , Transporte de Elétrons , Estrutura Molecular , Piruvato Descarboxilase/química , Tiamina/química , Tiamina Pirofosfato/química
18.
Arch Biochem Biophys ; 539(1): 1-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24018397

RESUMO

Phenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of norepinephrine (noradrenaline) to epinephrine (adrenaline) while, concomitantly, S-adenosyl-L-methionine (AdoMet) is converted to S-adenosyl-L-homocysteine. This reaction represents the terminal step in catecholamine biosynthesis and inhibitors of PNMT have been investigated, inter alia, as potential antihypertensive agents. At various times the kinetic mechanism of PNMT has been reported to operate by a random mechanism, an ordered mechanism in which norepinephrine binds first, and an ordered mechanism in which AdoMet binds first. Here we report the results of initial velocity studies on human PNMT in the absence and presence of product and dead end inhibitors. These, coupled with isothermal titration calorimetry and fluorescence binding experiments, clearly shown that hPNMT operates by an ordered sequential mechanism in which AdoMet binds first. Although the logV pH-profile was not well defined, plots of logV/K versus pH for AdoMet and phenylethanolamine, as well as the pKi versus pH for the inhibitor, SK&F 29661, were all bell-shaped indicating that a protonated and an unprotonated group are required for catalysis.


Assuntos
Feniletanolamina N-Metiltransferase/metabolismo , Biocatálise , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Isoquinolinas/farmacologia , Cinética , Modelos Moleculares , Feniletanolamina N-Metiltransferase/antagonistas & inibidores , Feniletanolamina N-Metiltransferase/química , Conformação Proteica
19.
BMC Evol Biol ; 13: 188, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24010723

RESUMO

BACKGROUND: Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. RESULTS: Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. CONCLUSIONS: Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy. This results in a cumulation of lineages that each evolve host conservatism on different and potentially transient host-related traits, and facilitates both ecological and resource specialisation.


Assuntos
Acacia/fisiologia , Tisanópteros/fisiologia , Acacia/classificação , Acacia/genética , Animais , Austrália , Teorema de Bayes , Evolução Biológica , Ecossistema , Filogenia
20.
FEBS J ; 280(24): 6395-411, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23895593

RESUMO

For almost 20 years, site-saturation mutagenesis (SSM) has been used to evolve stereoselective enzymes as catalysts for synthetic organic chemistry. Much of this work has focused on enzymes such as lipases and esterases, although the range is rapidly expanding. By contrast, using SSM to study enzyme mechanisms is much less common. Instead, site-directed mutagenesis is more generally employed, with a particular emphasis on alanine variants. In the present review, we provide examples of the growing use of SSM to study not only substrate and reaction selectivity, but also the reaction mechanism of thiamin diphosphate (ThDP)-dependent enzymes. We report that the use of SSM to examine the roles of the catalytic residues of benzoylformate decarboxylase gave rise to results that were at odds with earlier kinetic and structural studies using alanine substitutions and also questioned their conclusions. SSM was also employed to examine the long held tenet that a bulky hydrophobic residue provides a fulcrum by which the V-conformation of the ThDP cofactor is maintained. X-ray structures showed that ThDP stayed in the V-conformation even when the replacement residues were charged or did not contact the cofactor. We also summarize the results obtained when SSM was used to evolve new substrate specificity and/or enantioselectivity in ThDP-dependent enzymes such as benzoylformate decarboxylase, transketolase, 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase and the E1 component of the 2-oxoglutarate dehydrogenase complex.


Assuntos
Carboxiliases/metabolismo , Mutação/genética , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Animais , Carboxiliases/genética , Catálise , Humanos , Mutagênese Sítio-Dirigida , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...