Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4789, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886224

RESUMO

DNA polymerase iota (Polι) belongs to the Y-family of DNA polymerases that are involved in DNA damage tolerance through their role in translesion DNA synthesis. Like all other Y-family polymerases, Polι interacts with proliferating cell nuclear antigen (PCNA), Rev1, ubiquitin and ubiquitinated-PCNA and is also ubiquitinated itself. Here, we report that Polι also interacts with the p300 acetyltransferase and is acetylated. The primary acetylation site is K550, located in the Rev1-interacting region. However, K550 amino acid substitutions have no effect on Polι's ability to interact with Rev1. Interestingly, we find that acetylation of Polι significantly and specifically increases in response to SN2 alkylating agents and to a lower extent to SN1 alkylating and oxidative agents. As we have not observed acetylation of Polι's closest paralogue, DNA polymerase eta (Polη), with which Polι shares many functional similarities, we believe that this modification might exclusively regulate yet to be determined, and separate function(s) of Polι.


Assuntos
Alquilantes/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Acetilação , Motivos de Aminoácidos , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , Células HEK293 , Humanos , Nucleotidiltransferases/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo , DNA Polimerase iota
2.
DNA Repair (Amst) ; 73: 99-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30581075

RESUMO

The integrating conjugative element ICE391 (formerly known as IncJ R391) harbors an error-prone DNA polymerase V ortholog, polVICE391, encoded by the ICE391 rumAB operon. polV and its orthologs have previously been shown to be major contributors to spontaneous and DNA damage-induced mutagenesis in vivo. As a result, multiple levels of regulation are imposed on the polymerases so as to avoid aberrant mutagenesis. We report here, that the mutagenesis-promoting activity of polVICE391 is additionally regulated by a transcriptional repressor encoded by SetRICE391, since Escherichia coli expressing SetRICE391 demonstrated reduced levels of polVICE391-mediated spontaneous mutagenesis relative to cells lacking SetRICE391. SetRICE391 regulation was shown to be specific for the rumAB operon and in vitro studies with highly purified SetRICE391 revealed that under alkaline conditions, as well as in the presence of activated RecA, SetRICE391 undergoes a self-mediated cleavage reaction that inactivates repressor functions. Conversely, a non-cleavable SetRICE391 mutant capable of maintaining repressor activity, even in the presence of activated RecA, exhibited low levels of polVICE391-dependent mutagenesis. Electrophoretic mobility shift assays revealed that SetRICE391 acts as a transcriptional repressor by binding to a site overlapping the -35 region of the rumAB operon promoter. Our study therefore provides evidence indicating that SetRICE391 acts as a transcriptional repressor of the ICE391-encoded mutagenic response.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutagênese , Óperon/genética , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Resposta SOS em Genética/genética , Serina Endopeptidases/metabolismo
3.
DNA Repair (Amst) ; 58: 47-51, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28865289

RESUMO

The cDNA encoding human DNA polymerase ι (POLI) was cloned in 1999. At that time, it was believed that the POLI gene encoded a protein of 715 amino acids. Advances in DNA sequencing technologies led to the realization that there is an upstream, in-frame initiation codon that would encode a DNA polymerase ι (polι) protein of 740 amino acids. The extra 25 amino acid region is rich in acidic residues (11/25) and is reasonably conserved in eukaryotes ranging from fish to humans. As a consequence, the curated Reference Sequence (RefSeq) database identified polι as a 740 amino acid protein. However, the existence of the 740 amino acid polι has never been shown experimentally. Using highly specific antibodies to the 25 N-terminal amino acids of polι, we were unable to detect the longer 740 amino acid (ι-long) isoform in western blots. However, trace amounts of the ι-long isoform were detected after enrichment by immunoprecipitation. One might argue that the longer isoform may have a distinct biological function, if it exhibits significant differences in its enzymatic properties from the shorter, well-characterized 715 amino acid polι. We therefore purified and characterized recombinant full-length (740 amino acid) polι-long and compared it to full-length (715 amino acid) polι-short in vitro. The metal ion requirements for optimal catalytic activity differ slightly between ι-long and ι-short, but under optimal conditions, both isoforms exhibit indistinguishable enzymatic properties in vitro. We also report that like ι-short, the ι-long isoform can be monoubiquitinated and polyubiuquitinated in vivo, as well as form damage induced foci in vivo. We conclude that the predominant isoform of DNA polι in human cells is the shorter 715 amino acid protein and that if, or when, expressed, the longer 740 amino acid isoform has identical properties to the considerably more abundant shorter isoform.


Assuntos
Códon de Iniciação , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Sequência de Aminoácidos , DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Isoenzimas , Ubiquitinação , DNA Polimerase iota
4.
J Exp Med ; 213(9): 1675-83, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455952

RESUMO

DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation.


Assuntos
DNA Polimerase Dirigida por DNA/fisiologia , Genes de Imunoglobulinas , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mutação , DNA Polimerase iota
5.
J Biol Chem ; 290(45): 27332-27344, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26370087

RESUMO

Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys(11)- and Lys(48)-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys(11) and Lys(48) rather than oxidative damage per se.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação/genética , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Células HEK293 , Humanos , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação , DNA Polimerase iota
6.
J Biol Chem ; 289(13): 9136-45, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24532793

RESUMO

Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A "steric gate" pol ι mutant is considerably more active in the presence of Mn(2+) compared with Mg(2+) and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be "at risk" for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Ribonucleotídeos/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Domínio Catalítico , Sequência Conservada , DNA/biossíntese , DNA/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Primers do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Manganês/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Especificidade por Substrato , Tirosina , DNA Polimerase iota
7.
Nucleic Acids Res ; 41(3): 1649-60, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23248005

RESUMO

Human DNA polymerases η and ι are best characterized for their ability to facilitate translesion DNA synthesis (TLS). Both polymerases (pols) co-localize in 'replication factories' in vivo after cells are exposed to ultraviolet light and this co-localization is mediated through a physical interaction between the two TLS pols. We have mapped the polη-ι interacting region to their respective ubiquitin-binding domains (UBZ in polη and UBM1 and UBM2 in polι), and demonstrate that ubiquitination of either TLS polymerase is a prerequisite for their physical and functional interaction. Importantly, while monoubiquitination of polη precludes its ability to interact with proliferating cell nuclear antigen (PCNA), it enhances its interaction with polι. Furthermore, a polι-ubiquitin chimera interacts avidly with both polη and PCNA. Thus, the ubiquitination status of polη, or polι plays a key regulatory function in controlling the protein partners with which each polymerase interacts, and in doing so, determines the efficiency of targeting the respective polymerase to stalled replication forks where they facilitate TLS.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Humanos , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , DNA Polimerase iota
8.
EMBO J ; 25(12): 2847-55, 2006 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16763556

RESUMO

Y-family DNA polymerases have spacious active sites that can accommodate a wide variety of geometric distortions. As a consequence, they are considerably more error-prone than high-fidelity replicases. It is hardly surprising, therefore, that the in vivo activity of these polymerases is tightly regulated, so as to minimize their inadvertent access to primer-termini. We report here that one such mechanism employed by human cells relies on a specific and direct interaction between DNA polymerases iota and eta with ubiquitin (Ub). Indeed, we show that both polymerases interact noncovalently with free polyUb chains, as well as mono-ubiquitinated proliferating cell nuclear antigen (Ub-PCNA). Mutants of poliota (P692R) and poleta (H654A) were isolated that are defective in their interactions with polyUb and Ub-PCNA, whilst retaining their ability to interact with unmodified PCNA. Interestingly, the polymerase mutants exhibit significantly lower levels of replication foci in response to DNA damage, thereby highlighting the biological importance of the polymerase-Ub interaction in regulating the access of the TLS polymerases to stalled replication forks in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Ubiquitina/metabolismo , DNA Polimerase Dirigida por DNA/química , Fibroblastos/citologia , Humanos , Lisina/metabolismo , Mutação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Dedos de Zinco/genética , DNA Polimerase iota
9.
Nucleic Acids Res ; 30(11): 2588-98, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12034848

RESUMO

The UV-damaged DNA binding protein complex (UV-DDB) is implicated in global genomic nucleotide excision repair (NER) in mammalian cells. The complex consists of a heterodimer of p127 and p48. UV-DDB is defective in one complementation group (XP-E) of the heritable, skin cancer-prone disorder xeroderma pigmentosum. Upon UV irradiation of primate cells, UV-DDB associates tightly with chromatin, concomitant with the loss of extractable binding activity. We report here that an early event after UV, but not ionizing, radiation is the transient dose-dependent degradation of the small subunit, p48. Treatment of human cells with the proteasomal inhibitor NIP-L3VS blocks this UV-induced degradation of p48. In XP-E cell lines with impaired UV-DDB binding, p48 is resistant to degradation. UV-mediated degradation of p48 occurs independently of the expression of p53 and the cell's proficiency for NER, but recovery of p48 levels at later times (12 h and thereafter) is dependent upon the capacity of the cell to repair non-transcribed DNA. In addition, we find that the p127 subunit of UV-DDB binds in vivo to p300, a histone acetyltransferase. The data support a functional connection between UV-DDB binding activity, proteasomal degradation of p48 and chromatin remodeling during early steps of NER.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos da radiação , Raios Ultravioleta , Acetiltransferases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Cromatina/genética , Cromatina/metabolismo , Cromatina/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases , Humanos , Peso Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Mutação/genética , Testes de Precipitina , Complexo de Endopeptidases do Proteassoma , Ligação Proteica/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Fatores de Transcrição , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...