Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 114(47): E10216-E10223, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109258

RESUMO

The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/diagnóstico por imagem , Feminino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Periodicidade , Fotometria/métodos , Imagens com Corantes Sensíveis à Voltagem
3.
Neuroendocrinology ; 105(2): 157-169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27710963

RESUMO

BACKGROUND/AIMS: Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. METHODS: The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, ß-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. RESULTS: GABA neurons rarely co-localized with kisspeptin (<2%) or ß-endorphin (<1%), and only a small proportion of kisspeptin (∼10%) or ß-endorphin (∼3%) neurons co-localized with VGaT in male and female mice. In contrast, one-third of ARN GABA neurons co-localized with NPY, and nearly all NPY neurons (>95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. CONCLUSION: These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Caracteres Sexuais , Androgênios/administração & dosagem , Androgênios/metabolismo , Animais , Contagem de Células , Feminino , Imunofluorescência , Kisspeptinas/metabolismo , Masculino , Camundongos Transgênicos , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , beta-Endorfina/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(42): 13109-14, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443858

RESUMO

Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Optogenética , Animais , Núcleo Arqueado do Hipotálamo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA