Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696601

RESUMO

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Assuntos
Proteínas de Membrana , Córtex Pré-Frontal , Sinapses , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Humanos , Masculino , Feminino , Sinapses/patologia , Sinapses/metabolismo , Adulto , Pessoa de Meia-Idade , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Adulto Jovem , Adolescente , Criança , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Inibição Neural/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
2.
Ann Neurol ; 95(3): 558-575, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069470

RESUMO

OBJECTIVE: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS: Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS: FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION: We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.


Assuntos
Síndrome do Cromossomo X Frágil , Substância Branca , Humanos , Astrócitos/metabolismo , Tremor/genética , Gliose/patologia , Caspase 3/metabolismo , Substância Branca/patologia , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética
3.
Cells ; 12(18)2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759552

RESUMO

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Mutação/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia
4.
Cells ; 12(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681866

RESUMO

The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.


Assuntos
Encéfalo , Tremor , Humanos , Citidina , Citosina , Guanina , Metabolômica , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética
5.
Mov Disord Clin Pract ; 9(4): 473-478, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35586536

RESUMO

Background: Quantitative measurement of eye movements can reveal subtle progression in neurodegenerative diseases. Objective: To determine if quantitative measurements of eye movements may reveal subtle progression of fragile X-associated tremor and ataxia (FXTAS). Methods: Prosaccade (PS) and antisaccade (AS) behavior was analyzed in 25 controls, 57 non-FXTAS carriers, and 46 carriers with FXTAS. Results: Symptomatic individuals with FXTAS had longer AS latencies, increased rates of AS errors, and increased AS dysmetria relative to non-FXTAS carriers and controls. These deficits, along with PS latency and velocity, were greater in advanced FXTAS stages. Conclusion: AS deficits differentiated FXTAS from non-FXTAS premutation carriers implicating top-down control and frontostriatal deterioration. However, the absence of group differences between non-FXTAS carriers and controls in AS and PS markers suggests saccade performance may not be a sensitive enough measure for detecting conversion to FXTAS, but instead more helpful as translational biomarkers of FXTAS progression.

6.
J Med Genet ; 59(7): 687-690, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34193467

RESUMO

BACKGROUND: While an association between full mutation CGG-repeat expansions of the Fragile X Mental Retardation 1 (FMR1) gene and connective tissue problems are clearly described, problems in fragile X premutation carriers (fXPCs) CGG-repeat range (55-200 repeats) of the FMR1 gene may be overlooked. OBJECTIVE: To report five FMR1 fXPCs cases with the hypermobile Ehlers-Danlos syndrome (hEDS) phenotype. METHODS: We collected medical histories and FMR1 molecular measures from five cases who presented with joint hypermobility and loose connective tissue and met inclusion criteria for hEDS. RESULTS: Five cases were female and ranged between 16 and 49 years. The range of CGG-repeat allele sizes ranged from 66 to 150 repeats. All had symptoms of hEDS since early childhood. Commonalities in molecular pathogenesis and coexisting conditions between the fXPCs and hEDS are also presented. The premutation can lead to a reduction of fragile X mental retardation protein, which is crucial in maintaining functions of the extracellular matrix-related proteins, particularly matrix metallopeptidase 9 and elastin. Moreover, elevated FMR1 messenger RNA causes sequestration of proteins, which results in RNA toxicity. CONCLUSION: Both hEDS phenotype and premutation involvement may co-occur because of related commonalities in pathogenesis.


Assuntos
Síndrome de Ehlers-Danlos , Síndrome do Cromossomo X Frágil , Pré-Escolar , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Heterozigoto , Humanos , Masculino , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
7.
Front Neurosci ; 15: 720253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602969

RESUMO

This case documents the co-occurrence of the fragile X-associated tremor ataxia syndrome (FXTAS) and Alzheimer-type neuropathology in a 71-year-old premutation carrier with 85 CGG repeats in the fragile X mental retardation 1 (FMR1) gene, in addition to an apolipoprotein E (APOE) ε4 allele. FXTAS and Alzheimer's Disease (AD) are late-onset neurodegenerative diseases that share overlapping cognitive deficits including processing speed, working memory and executive function. The prevalence of coexistent FXTAS-AD pathology remains unknown. The clinical picture in this case was marked with rapid cognitive decline between age 67 and 71 years in addition to remarkable MRI changes. Over the 16 months between the two clinical evaluations, the brain atrophied 4.12% while the lateral ventricles increased 26.4% and white matter hyperintensities (WMH) volume increased 15.6%. Other regions atrophied substantially faster than the whole brain included the thalamus (-6.28%), globus pallidus (-10.95%), hippocampus (-6.95%), and amygdala (-7.58%). A detailed postmortem assessment included an MRI with confluent WMH and evidence of cerebral microbleeds (CMB). The histopathological study demonstrated FXTAS inclusions in neurons and astrocytes, a widespread presence of phosphorylated tau protein and, amyloid ß plaques in cortical areas and the hippocampus. CMBs were noticed in the precentral gyrus, middle temporal gyrus, visual cortex, and brainstem. There were high amounts of iron deposits in the globus pallidus and the putamen consistent with MRI findings. We hypothesize that coexistent FXTAS-AD neuropathology contributed to the steep decline in cognitive abilities.

8.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502080

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder affecting subjects (premutation carriers) with a 55-200 CGG-trinucleotide expansion in the 5'UTR of the fragile X mental retardation 1 gene (FMR1) typically after age 50. As both the presence of white matter hyperintensities (WMHs) and atrophied gray matter on magnetic resonance imaging (MRI) are linked to age-dependent decline in cognition, here we tested whether MRI outcomes (WMH volume (WMHV) and brain volume) were correlated with mitochondrial bioenergetics from peripheral blood monocytic cells in 87 carriers with and without FXTAS. As a parameter assessing cumulative damage, WMHV was correlated to both FXTAS stages and age, and brain volume discriminated between carriers and non-carriers. Similarly, mitochondrial mass and ATP production showed an age-dependent decline across all participants, but in contrast to WMHV, only FADH2-linked ATP production was significantly reduced in carriers vs. non-carriers. In carriers, WMHV negatively correlated with ATP production sustained by glucose-glutamine and FADH2-linked substrates, whereas brain volume was positively associated with the latter and mitochondrial mass. The observed correlations between peripheral mitochondrial bioenergetics and MRI findings-and the lack of correlations with FXTAS diagnosis/stages-may stem from early brain bioenergetic deficits even before overt FXTAS symptoms and/or imaging findings.


Assuntos
Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Ataxia/metabolismo , Encéfalo/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/metabolismo , Monócitos/metabolismo , Tremor/metabolismo , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Ataxia/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Metabolismo Energético , Feminino , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Tremor/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento
9.
Mov Disord ; 36(8): 1935-1943, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33760253

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disease of late onset developed by carriers of the premutation in the fragile x mental retardation 1 (FMR1) gene. Pathological features of neurodegeneration in fragile X-associated tremor/ataxia syndrome include toxic levels of FMR1 mRNA, ubiquitin-positive intranuclear inclusions, white matter disease, iron accumulation, and a proinflammatory state. OBJECTIVE: The objective of this study was to analyze the presence of cerebral microbleeds in the brains of patients with fragile X-associated tremor/ataxia syndrome and investigate plausible causes for cerebral microbleeds in fragile X-associated tremor/ataxia syndrome. METHODS: We collected cerebral and cerebellar tissue from 15 fragile X-associated tremor/ataxia syndrome cases and 15 control cases carrying FMR1 normal alleles. We performed hematoxylin and eosin, Perls and Congo red stains, ubiquitin, and amyloid ß protein immunostaining. We quantified the number of cerebral microbleeds, amount of iron, presence of amyloid ß within the capillaries, and number of endothelial cells containing intranuclear inclusions. We evaluated the relationships between pathological findings using correlation analysis. RESULTS: We found intranuclear inclusions in the endothelial cells of capillaries and an increased number of cerebral microbleeds in the brains of those with fragile X-associated tremor/ataxia syndrome, both of which are indicators of cerebrovascular dysfunction. We also found a suggestive association between the amount of capillaries that contain amyloid ß in the cerebral cortex and the rate of disease progression. CONCLUSION: We propose microangiopathy as a pathologic feature of fragile X-associated tremor/ataxia syndrome. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Neurodegenerativas , Ataxia/complicações , Ataxia/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Células Endoteliais , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Humanos , Tremor/complicações , Tremor/genética
10.
Front Psychiatry ; 12: 762915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126193

RESUMO

Individuals with the fragile X premutation report symptoms of chronic pain from multiple systems, have increased incidence of comorbid conditions where pain is a prominent feature, and pathophysiology that supports disrupted pain regulation, inflammation, and energy imbalance. Less is known about how pain manifests for the subpopulation of carriers that develop the motor and cognitive changes of fragile X-associated tremor and ataxia syndrome (FXTAS), and how pain may differ between men and women. We gathered data collected from 104 males and females with FXTAS related to chronic pain, comorbid conditions related to pain, and medications used for pain control to further explore the types of pain experienced and to better characterize how individuals with the fragile X premutation experience pain sensation across genders. We found that women experience significantly more pain symptoms than men, particularly allodynia (20 vs. 2.0%, p = 0.008), peripheral neuropathy pain (43.9 vs. 25.4%, p = 0.0488), migraine (43.9 vs. 14.5%, p = 0.0008), fibromyalgia (26.8 vs. 0%, p = 0.0071) and back pain (48.5 vs. 23.4%, p = 0.008). We found onset of peripheral neuropathy predicts the onset of ataxia (ß = 0.63 ± 0.25, p = 0.019) and tremor (ß = 0.56 ± 0.17, p = 0.004) across gender. Women also report significantly more anxiety (82.9 vs. 39.7%, p < 0.001), which has implications for ideal pain treatment. These pain symptoms need to be recognized in the medical history and treated appropriately, with consideration for overlapping comorbidities.

11.
Front Mol Biosci ; 7: 578640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195422

RESUMO

The X-linked FMR1 premutation (PM) is characterized by a 55-200 CGG triplet expansion in the 5'-untranslated region (UTR). Carriers of the PM were originally thought to be asymptomatic; however, they may present general neuropsychiatric manifestations including learning disabilities, depression and anxiety, among others. With age, both sexes may also develop the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Among carriers, females are at higher risk for developing immune disorders, hypertension, seizures, endocrine disorders and chronic pain, among others. Some female carriers younger than 40 years old may develop fragile X-associated primary ovarian insufficiency (FXPOI). To date, no studies have addressed the metabolic footprint - that includes mitochondrial metabolism - of female carriers and its link to clinical/cognitive manifestations. To this end, we performed a comprehensive biochemical assessment of 42 female carriers (24-70 years old) compared to sex-matched non-carriers. By applying a multivariable correlation matrix, a generalized bioenergetics impairment was correlated with diagnoses of the PM, FXTAS and its severity, FXPOI and anxiety. Intellectual deficits were strongly correlated with both mitochondrial dysfunction and with CGG repeat length. A combined multi-omics approach identified a down-regulation of RNA and mRNA metabolism, translation, carbon and protein metabolism, unfolded protein response, and up-regulation of glycolysis and antioxidant response. The suboptimal activation of the unfolded protein response (UPR) and endoplasmic-reticulum-associated protein degradation (ERAD) response challenges and further compromises the PM genetic background to withstand other, more severe forms of stress. Mechanistically, some of the deficits were linked to an altered protein expression due to decreased protein translation, but others seemed secondary to oxidative stress originated from the accumulation of either toxic mRNA or RAN-derived protein products or as a result of a direct toxicity of accumulated metabolites from deficiencies in critical enzymes.

12.
Brain Sci ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992879

RESUMO

Children with fragile X syndrome (FXS) exhibit deficits in a variety of cognitive processes within the executive function domain. As working memory (WM) is known to support a wide range of cognitive, learning and adaptive functions, WM computer-based training programs have the potential to benefit people with FXS and other forms of intellectual and developmental disability (IDD). However, research on the effectiveness of WM training has been mixed. The current study is a follow-up "deep dive" into the data collected during a randomized controlled trial of Cogmed (Stockholm, Sweden) WM training in children with FXS. Analyses characterized the training data, identified training quality metrics, and identified subgroups of participants with similar training patterns. Child, parent, home environment and training quality metrics were explored in relation to the clinical outcomes during the WM training intervention. Baseline cognitive level and training behavior metrics were linked to gains in WM performance-based assessments and also to reductions in inattention and other behaviors related to executive functioning during the intervention. The results also support a recommendation that future cognitive intervention trials with individuals with IDD such as FXS include additional screening of participants to determine not only baseline feasibility, but also capacity for training progress over a short period prior to inclusion and randomization. This practice may also better identify individuals with IDD who are more likely to benefit from cognitive training in clinical and educational settings.

13.
Biomedicines ; 8(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466255

RESUMO

Fragile X-associated tremor and ataxia syndrome (FXTAS) is a neurodegenerative disease developed by carriers of a premutation in the fragile X mental retardation 1 (FMR1) gene. The core clinical symptoms usually manifest in the early 60s, typically beginning with intention tremor followed by cerebellar ataxia. Ataxia can be the only symptom in approximately 20% of the patients. FXTAS has a slow progression, and patients usually experience advanced deterioration 15 to 25 years after the initial diagnosis. Common findings in brain imaging include substantial brain atrophy and white matter disease (WMD). We report three cases with an atypical clinical presentation, all presenting with gait problems as their initial manifestation and with ataxia as the dominant symptom without significant tremor, as well as a faster than usual clinical progression. Magnetic resonance imaging (MRI) was remarkable for severe brain atrophy, ventriculomegaly, thinning of the corpus callosum, and periventricular WMD. Two cases were diagnosed with definite FXTAS on the basis of clinical and radiological findings, with one individual also developing moderate dementia. Factors such as environmental exposure and general anesthesia could have contributed to their clinical deterioration. FXTAS should be considered in the differential diagnosis of patients presenting with ataxia, even in the absence of tremor, and FMR1 DNA testing should be sought in those with a family history of fragile X syndrome or premutation disorders.

14.
Neurobiol Dis ; 136: 104740, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927143

RESUMO

This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tremor/genética , Tremor/metabolismo , Tremor/patologia
15.
J Neurodev Disord ; 11(1): 4, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30982467

RESUMO

BACKGROUND: Individuals with fragile X syndrome (FXS) typically demonstrate profound executive function (EF) deficits that interfere with learning, socialization, and emotion regulation. We completed the first large, non-pharmacological controlled trial for FXS, designed to evaluate the efficacy of Cogmed, a computer/tablet-based working memory (WM) training program. METHODS: The study was a randomized, blinded, parallel two-arm controlled trial in 100 children and adolescents with FXS (63 male, 37 female; 15.28 ± 3.36 yrs.). Participants were randomized equally to adaptive (difficulty level adjusted to performance) or non-adaptive (control) Cogmed training. Participants were assessed at home using objective measures of WM (primary outcome) and EF at baseline, following 20-25 caregiver-supported sessions over 5-6 weeks, and at follow-up 3 months after cessation of training. Parents and teachers provided ratings of WM, attention, and EF. RESULTS: The WM composite and selective domains of EF (distractibility, cognitive flexibility), as well as parent- and teacher-reported attention and EF, significantly improved across the full study sample, with many changes maintained at follow-up. However, comparisons of improvement between adaptive and non-adaptive control conditions did not differ, showing that progressively challenging the WM system by expanding span length did not provide added benefit overall. CONCLUSIONS: Further experimental comparisons are needed before Cogmed working memory training can be considered empirically validated for children with FXS, forming the basis of treatment recommendation. However, given that prior studies show no significant changes on these measures in FXS without treatment, that improvements were maintained for 3 months, and that blinded teachers reported improvements in the classroom, the modest benefits seen in both adaptive and non-adaptive groups overall are unlikely to be attributable to placebo or practice effects alone. Future analyses examining inter-individual differences (e.g., baseline capacity, training efficiency, co-morbidity, training environment, characteristics of training aide) may help to link this intervention to outcomes and potential transfer effects. TRIAL REGISTRATION: US National Institutes of Health (ClinicalTrials.gov), NCT02747394 .


Assuntos
Disfunção Cognitiva/reabilitação , Remediação Cognitiva/métodos , Função Executiva/fisiologia , Síndrome do Cromossomo X Frágil/reabilitação , Memória de Curto Prazo/fisiologia , Adolescente , Criança , Disfunção Cognitiva/etiologia , Remediação Cognitiva/instrumentação , Feminino , Síndrome do Cromossomo X Frágil/complicações , Humanos , Masculino , Terapia Assistida por Computador , Resultado do Tratamento
16.
Front Neurol ; 9: 695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186228

RESUMO

Here we report five cases of male FMR1 premutation carriers who present without clinical symptoms of the fragile X-associated tremor/ataxia syndrome (FXTAS), but who on MRI demonstrate white matter hyperintensities in the middle cerebellar peduncles (MCP sign) and other brain regions, a rare finding. MCP sign is the major radiological feature of FXTAS; it is therefore remarkable to identify five cases in which this MRI finding is present in the absence of tremor and ataxia, the major clinical features of FXTAS. Subjects underwent a detailed neurological evaluation, neuropsychological testing, molecular testing, and MRI evaluation utilizing T2 imaging described here. Additional white matter disease was present in the corpus callosum in four of the five cases. However, all cases were asymptomatic for motor signs of FXTAS.

17.
Neuropsychology ; 28(4): 571-584, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24773414

RESUMO

OBJECTIVE: Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (FXTAS) often accompanied by inhibitory control impairments, even in fXPCs without motor symptoms. Inhibitory control impairments might precede, and thus indicate elevated risk for motor impairment associated with FXTAS. We tested whether inhibitory impairments are observable in fXPCs by assessing oculomotor performance. METHOD: Participants were males aged 18-48 years asymptomatic for FXTAS. FXPCs (n = 21) and healthy age-matched controls (n = 22) performed four oculomotor tasks. In a Fixation task, participants fixated on a central cross and maintained gaze position when a peripheral stimulus appeared. In a Pursuit task, participants maintained gaze on a square moving at constant velocity. In a Prosaccade task, participants fixated on a central cross, then looked at a peripheral stimulus. An Antisaccade task was identical to the Prosaccade task, except participants looked in the direction opposite the stimulus. Inhibitory cost was the difference in saccade latency between the Antisaccade and Prosaccade tasks. RESULTS: Relative to controls, fXPCs had longer saccade latency in the Antisaccade task. In fXPCs, inhibitory cost was positively associated with vermis area in lobules VI-VII. CONCLUSION: Antisaccades require inhibitory control to inhibit reflexive eye movements. We found that eye movements are sensitive to impaired inhibitory control in fXPCs asymptomatic for FXTAS. Thus, eye movements may be useful in assessing FXTAS risk or disease progression.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Inibição Psicológica , Transtornos da Motilidade Ocular/etiologia , Insuficiência Ovariana Primária/complicações , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Córtex Cerebelar/patologia , Transtornos Cognitivos/etiologia , Função Executiva/fisiologia , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos da Motilidade Ocular/diagnóstico , Testes Psicológicos , Tempo de Reação/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto Jovem
18.
J Neurodev Disord ; 6(1): 45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25937844

RESUMO

BACKGROUND: Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (fragile X-associated tremor/ataxia syndrome (FXTAS)) often accompanied by cognitive decline. Several broad domains are implicated as core systems of dysfunction in fXPCs, including perceptual processing of spatial information, orienting of attention to space, and inhibiting attention to irrelevant distractors. We tested whether orienting of spatial attention is impaired in fXPCs. METHODS: Participants were fXPCs or healthy controls (HCs) asymptomatic for FXTAS. In experiment 1, they were male and female children and adults (aged 7-45 years). They oriented attention in response to volitional (endogenous) and reflexive (exogenous) cues. In experiment 2, the participants were men (aged 18-48 years). They oriented attention in an endogenous cueing task that manipulated the amount of information in the cue. RESULTS: In women, fXPCs exhibited slower reaction times than HCs in both the endogenous and exogenous conditions. In men, fXPCs exhibited slower reaction times than HCs in the exogenous condition and in the challenging endogenous cueing task with probabilistic cues. In children, fXPCs did not differ from HCs. CONCLUSIONS: Because adult fXPCs were slower even when controlling for psychomotor speed, results support the interpretation that a core dysfunction in fXPCs is the allocation of spatial attention, while perceptual processing and attention orienting are intact. These findings indicate the importance of considering age and sex when interpreting and generalizing studies of fXPCs.

19.
J Neurodev Disord ; 4(1): 26, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23148490

RESUMO

BACKGROUND: A previous study reported enhanced psychomotor speed, and subtle but significant cognitive impairments, modulated by age and by mutations in the fragile X mental retardation 1 (FMR1) gene in adult female fragile X premutation carriers (fXPCs). Because male carriers, unlike females, do not have a second, unaffected FMR1 allele, male fXPCs should exhibit similar, if not worse, impairments. Understanding male fXPCs is of particular significance because of their increased risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS: Male fXPCs (n = 18) and healthy control (HC) adults (n = 26) aged less than 45 years performed two psychomotor speed tasks (manual and oral) and two visuospatial tasks (magnitude comparison and enumeration). In the magnitude comparison task, participants were asked to compare and judge which of two bars was larger. In the enumeration task, participants were shown between one and eight green bars in the center of the screen, and asked to state the total number displayed. Enumeration typically proceeds in one of two modes: subitizing, a fast and accurate process that works only with a small set of items, and counting, which requires accurate serial-object detection and individuation during visual search. We examined the associations between the performance on all tasks and the age, full-scale intelligent quotient, and CGG repeat length of participants. RESULTS: We found that in the magnitude comparison and enumeration tasks, male fXPCs exhibited slower reaction times relative to HCs, even after controlling for simple reaction time. CONCLUSIONS: Our results indicate that male fXPCs as a group show impairments (slower reaction times) in numerical visuospatial tasks, which are consistent with previous findings. This adds to a growing body of literature characterizing the phenotype in fXPCs who are asymptomatic for FXTAS. Future longitudinal studies are needed to determine how these impairments relate to risk of developing FXTAS.

20.
Curr Genomics ; 12(3): 216-24, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-22043169

RESUMO

Recent data from a national survey highlighted a significant difference in obesity rates in young fragile X males (31%) compared to age matched controls (18%). Fragile X syndrome (FXS) is the most common cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200) on the promotor region of the fragile X mental retardation 1 gene (FMR1). As a result, the promotor region often becomes methylated which leads to a deficiency or absence of the FMR1 protein (FMRP). Common characteristics of FXS include mild to severe cognitive impairments in males but less severe cognitive impairment in females. Physical features of FXS include an elongated face, prominent ears, and post-pubertal macroorchidism. Severe obesity in full mutation males is often associated with the Prader-Willi phenotype (PWP) which includes hyperphagia, lack of satiation after meals, and hypogonadism or delayed puberty; however, there is no deletion at 15q11-q13 nor uniparental maternal disomy. Herein, we discuss the molecular mechanisms leading to FXS and the Prader-Willi phenotype with an emphasis on mouse FMR1 knockout studies that have shown the reversal of weight increase through mGluR antagonists. Finally, we review the current medications used in treatment of FXS including the atypical antipsychotics that can lead to weight gain and the research regarding the use of targeted treatments in FXS that will hopefully have a significantly beneficial effect on cognition and behavior without weight gain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...