Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 106(5): 660-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170253

RESUMO

For small, isolated populations 2 common conservation concerns relate to genetic threats: inbreeding and negative consequences associated with loss of genetic diversity due to drift. Mitigating these threats often involves conservation actions that can be controversial, such as translocations or captive breeding programs. Although such actions have been successful in some situations, in others they have had undesirable outcomes. Here, we estimated the effective population size (N e ) of the Sable Island horses to assess the risk to this population of these genetic threats. We found surprising consistency of N e estimates across the 5 different methods used, with a mean of 48 effective individuals. This estimate falls below the 50 criterion of the "50/500 rule," below which inbreeding depression is a concern for population viability. However, simulations and knowledge of population history indicate that this population is still in its early stages of approaching equilibrium between mutation, drift, and genetic diversity; and no negative consequences have been identified that could be associated with inbreeding depression. Therefore, we do not recommend taking management action (such as translocations) at this stage. Rather, we propose continued monitoring of genetic diversity and fitness over time so that trends and any substantial changes can be detected. This represents one of the few unmanaged horse populations in the world, and therefore these data will not only alert us to serious concerns regarding their conservation status, but will also provide a wealth of information about how natural processes drive patterns of reproduction, mortality, and population growth over time.


Assuntos
Variação Genética , Genética Populacional , Cavalos/genética , Animais , Teorema de Bayes , Canadá , Conservação dos Recursos Naturais , Frequência do Gene , Genótipo , Endogamia , Ilhas , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Genéticos , Densidade Demográfica
2.
PLoS One ; 10(5): e0126309, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942425

RESUMO

During late summer and early autumn, temperate bats migrate from their summering sites to swarming sites, where mating likely occurs. However, the extent to which individuals of a single summering site migrate to the same swarming site, and vice versa, is not known. We examined the migratory connectivity between summering and swarming sites in two temperate, North American, bat species, the little brown bat (Myotis lucifugus) and the northern long-eared bat (Myotis septentrionalis). Using mitochondrial and microsatellite DNA markers, we examined population structuring within and among summering and swarming sites. Both species exhibited moderate degrees of mitochondrial DNA differentiation (little brown bat: FST(SUMMER) = 0.093, FST(SWARMING) = 0.052; northern long-eared bat: FST(SUMMER) = 0.117, FST(SWARMING) = 0.043) and little microsatellite DNA differentiation among summering and among swarming sites[corrected]. Haplotype diversity was significantly higher at swarming sites than summering sites, supporting the idea that swarming sites are comprised of individuals from various summering sites. Further, pairwise analyses suggest that swarming sites are not necessarily comprised of only individuals from the most proximal summering colonies.


Assuntos
Migração Animal/fisiologia , Quirópteros/genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Animais , DNA Mitocondrial/genética , Feminino , Variação Genética/genética , Genética Populacional , Geografia , Haplótipos/genética , Masculino , Dados de Sequência Molecular , Estações do Ano
3.
PLoS One ; 9(6): e99569, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924490

RESUMO

Species biogeography is a result of complex events and factors associated with climate change, ecological interactions, anthropogenic impacts, physical geography, and evolution. To understand the contemporary biogeography of a species, it is necessary to understand its history. Specimens from areas of localized extinction are important, as extirpation of species from these areas may represent the loss of unique adaptations and a distinctive evolutionary trajectory. The walrus (Odobenus rosmarus) has a discontinuous circumpolar distribution in the arctic and subarctic that once included the southeastern Canadian Maritimes region. However, exploitation of the Maritimes population during the 16th-18th centuries led to extirpation, and the species has not inhabited areas south of 55°N for ∼250 years. We examined genetic and morphological characteristics of specimens from the Maritimes, Atlantic (O. r. rosmarus) and Pacific (O. r. divergens) populations to test the hypothesis that the first group was distinctive. Analysis of Atlantic and Maritimes specimens indicated that most skull and mandibular measurements were significantly different between the Maritimes and Atlantic groups and discriminant analysis of principal components confirmed them as distinctive groups, with complete isolation of skull features. The Maritimes walrus appear to have been larger animals, with larger and more robust tusks, skulls and mandibles. The mtDNA control region haplotypes identified in Maritimes specimens were unique to the region and a greater average number of nucleotide differences were found between the regions (Atlantic and Maritimes) than within either group. Levels of diversity (h and π) were lower in the Maritimes, consistent with other studies of species at range margins. Our data suggest that the Maritimes walrus was a morphologically and genetically distinctive group that was on a different evolutionary path from other walrus found in the north Atlantic.


Assuntos
DNA/genética , Extinção Biológica , Análise de Sequência de DNA/métodos , Morsas/anatomia & histologia , Morsas/genética , Animais , Canadá , DNA Mitocondrial/genética , Análise Discriminante , Feminino , Geografia , Haplótipos , Masculino , Mandíbula/anatomia & histologia , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Crânio/anatomia & histologia
4.
J Hered ; 101(2): 235-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19939969

RESUMO

Mitochondrial heteroplasmy has been identified in a variety of species and can result from either paternal leakage, whereby sperm mitochondria enter the ova during fertilization, or more commonly by the "survival" and proliferation of mutant variants within an organism. From an evolutionary perspective, this process represents the generation of new mitochondrial diversity within a species. Although this has been documented in some mammalian species, it has been reported from relatively few wild mammalian populations and in no wild nonhuman population has the transfer and segregation of mitochondrial heteroplasmy been tracked through multiple generations. We report on the first case of the identification and tracking of mitochondrial control region heteroplasmy through 3 generations in the North Atlantic right whale, Eubalaena glacialis. We also identify the full segregation to the mutant variant within a single generation and thus the development of a new haplotype (haplotype G) in a maternal lineage of this endangered species. Witnessed here is the generation of mitochondrial diversity in a genetically depauperate species.


Assuntos
DNA Mitocondrial/genética , Linhagem , Baleias/genética , Animais , Sequência de Bases , Características da Família , Genes Mitocondriais/genética , Variação Genética , Genética Populacional , Cariotipagem , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...