Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674016

RESUMO

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Assuntos
Dinaminas , Rejeição de Enxerto , Transplante de Coração , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Transplante de Coração/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocôndrias/metabolismo , Células Endoteliais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Transdução de Sinais
2.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396887

RESUMO

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Assuntos
Hemoglobinas , Transplante de Rim , Traumatismo por Reperfusão , Tiossulfatos , Ratos , Animais , Preservação de Órgãos , Sobrevivência de Enxerto , Ratos Endogâmicos Lew , Rim , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
3.
Biomed Pharmacother ; 145: 112435, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798469

RESUMO

INTRODUCTION: Cold ischemia-reperfusion injury (IRI) is an inevitable event that increases post-transplant complications. We have previously demonstrated that supplementation of University of Wisconsin (UW) solution with non-FDA-approved hydrogen sulfide (H2S) donor molecules minimizes cold IRI and improves renal graft function after transplantation. The present study investigates whether an FDA-approved H2S donor molecule, sodium thiosulfate (STS), will have the same or superior effect in a clinically relevant rat model of syngeneic orthotopic kidney transplantation. METHOD: Thirty Lewis rats underwent bilateral nephrectomy followed by syngeneic orthotopic transplantation of the left kidney after 24-hour preservation in either UW or UW+STS solution at 4 °C. Rats were monitored to post-transplant day 14 and sacrificed to assess renal function (urine output, serum creatinine and blood urea nitrogen). Kidney sections were stained with H&E, TUNEL, CD68, and myeloperoxidase (MPO) to detect acute tubular necrosis (ATN), apoptosis, macrophage infiltration, and neutrophil infiltration. RESULT: UW+STS grafts showed significantly improved graft function immediately after transplantation, with improved recipient survival compared to UW grafts (p < 0.05). Histopathological examination revealed significantly reduced ATN, apoptosis, macrophage and neutrophil infiltration and downregulation of pro-inflammatory and pro-apoptotic genes in UW+STS grafts compared to UW grafts (p < 0.05). CONCLUSION: We show for the first time that preservation of renal grafts in STS-supplemented UW solution protects against prolonged cold IRI by suppressing apoptotic and inflammatory pathways, and thereby improving graft function and prolonging recipient survival. This could represent a novel clinically applicable therapeutic strategy to minimize the detrimental clinical outcome of prolonged cold IRI in kidney transplantation.


Assuntos
Transplante de Rim/métodos , Soluções para Preservação de Órgãos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Tiossulfatos/farmacologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Apoptose/fisiologia , Nitrogênio da Ureia Sanguínea , Isquemia Fria/efeitos adversos , Creatinina/sangue , Glutationa/administração & dosagem , Glutationa/farmacologia , Insulina/administração & dosagem , Insulina/farmacologia , Testes de Função Renal , Masculino , Soluções para Preservação de Órgãos/administração & dosagem , Rafinose/administração & dosagem , Rafinose/farmacologia , Ratos , Ratos Endogâmicos Lew , Taxa de Sobrevida , Tiossulfatos/administração & dosagem
4.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681708

RESUMO

Ischemia-reperfusion injury (IRI) is an inevitable consequence of organ transplant procedure and associated with acute and chronic organ rejection in transplantation. IRI leads to various forms of programmed cell death, which worsens tissue damage and accelerates transplant rejection. We recently demonstrated that necroptosis participates in murine cardiac microvascular endothelial cell (MVEC) death and murine cardiac transplant rejection. However, MVEC death under a more complex IRI model has not been studied. In this study, we found that simulating IRI conditions in vitro by hypoxia, reoxygenation and treatment with inflammatory cytokines induced necroptosis in MVECs. Interestingly, the apoptosis-inducing factor (AIF) translocated to the nucleus during MVEC necroptosis, which is regulated by the mitochondrial permeability molecule cyclophilin D (CypD). Furthermore, CypD deficiency in donor cardiac grafts inhibited AIF translocation and mitigated graft IRI and rejection (n = 7; p = 0.002). Our studies indicate that CypD and AIF play significant roles in MVEC necroptosis and cardiac transplant rejection following IRI. Targeting CypD and its downstream AIF may be a plausible approach to inhibit IRI-caused cardiac damage and improve transplant survival.


Assuntos
Fator de Indução de Apoptose/metabolismo , Necroptose , Peptidil-Prolil Isomerase F/metabolismo , Animais , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/genética , Hipóxia Celular , Núcleo Celular/metabolismo , Peptidil-Prolil Isomerase F/deficiência , Peptidil-Prolil Isomerase F/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/citologia , Modelos Biológicos , Necroptose/efeitos dos fármacos , Oxigênio/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fator de Necrose Tumoral alfa/farmacologia
5.
Am J Transplant ; 21(10): 3268-3279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784431

RESUMO

Inflammation posttransplant is directly linked to cell death programs including apoptosis and necrosis. Cell death leads to the release of cellular contents which can promote inflammation. Targeting of these pathways should be an effective strategy to prevent transplant rejection. Toll-like receptor 3 (TLR3) is emerging as a major endogenous sensor of inflammation. In this study, we assessed the role of TLR3 on cell death and transplant rejection. We showed that TLR3 is highly expressed on mouse microvascular endothelial cell (ECs) and the endothelium of cardiac grafts. We demonstrated that TLR3 interacting with dsRNA or self-RNA triggered apoptosis and necroptosis in ECs. Interestingly, TLR3-induced necroptosis led mitochondrial damage. Inhibition of the mitochondrial membrane permeability molecule Cyclophilin D prevented necroptosis in ECs. In vivo, endothelium damage and activities of caspase-3 and mixed lineage kinase domain-like protein were inhibited in TLR3-/- cardiac grafts compared with C57BL/6 grafts posttransplant (n = 5, p < .001). Importantly, TLR3-/- cardiac grafts had prolonged survival in allogeneic BALB/c mice (mean survival = 121 ± 67 vs. 31 ± 6 days of C57BL/6 grafts, n = 7, p = .002). In summary, our study suggests that TLR3 is an important cell death inducer in ECs and cardiac grafts and thus a potential therapeutic target in preventing cardiac transplant rejection.


Assuntos
Transplante de Coração , Receptor 3 Toll-Like , Animais , Apoptose , Morte Celular , Transplante de Coração/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doadores de Tecidos , Receptor 3 Toll-Like/metabolismo
6.
Nephrology (Carlton) ; 24(6): 661-669, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30175514

RESUMO

BACKGROUND: Ischaemia-reperfusion injury (IRI) is associated with programmed cell death that promotes inflammation and organ dysfunction. Necroptosis is mediated by members of receptor interacting protein kinases (RIPK1/3). Inhibition of RIPK1/3 provides a pro-survival benefit in kidney IRI. Caspase-8 initiates apoptosis and contributes to IRI. We studied whether inhibiting both RIPK3 and caspase-8 would provide an additional benefit in kidney IRI. METHODS: A clamp was applied to the left kidney pedicle for 45 min followed by right kidney nephrectomy. Kidney and serum from wild type, RIPK3-/- , and RIPK3-/- caspase-8-/- double knockout (DKO) mice were collected post-IRI for assessment of injury. Tubular epithelial cells (TEC) isolated from wild type, RIPK3-/- , and DKO mice were treated with interferons-γ and interleukin-1ß to induce apoptotic death. RESULTS: Kidney IRI of DKO mice did not show improvement over RIPK3-/- mice. We have found that DKO triggered 'intrinsic' apoptosis in TEC in response to interleukin-1ß and interferons-γ. Up-regulation of the B-cell lymphoma 2 (Bcl-2)-associated death promoter, the Bcl-2-homologous antagonist killer and Bcl-2-associated X protein and enhanced activation of caspase-3 and 9 were found in DKO TEC. TEC infected with Murine cytomegalovirus that encodes multiple cell death inhibitors resist to death. CONCLUSION: We show that the deletion of both RIPK3 and caspase-8 does not provide additive benefit in IRI or TEC death and may enhance injury by up-regulation of intrinsic apoptosis. This suggests blocking multiple death pathways may be required for the prevention of kidney IRI clinically.


Assuntos
Apoptose , Caspase 8/metabolismo , Células Epiteliais/enzimologia , Nefropatias/enzimologia , Túbulos Renais/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Traumatismo por Reperfusão/enzimologia , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
7.
J Parasitol ; 97(2): 328-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21506817

RESUMO

Reduction of risk for human and food animal infection with Toxoplasma gondii is hampered by the lack of epidemiological data documenting the predominant routes of infection (oocyst vs. tissue cyst consumption) in horizontally transmitted toxoplasmosis. Existing serological assays can determine previous exposure to the parasite, but not the route of infection. We have used difference gel electrophoresis, in combination with tandem mass spectroscopy and Western blot, to identify a sporozoite-specific protein (T. gondii embryogenesis-related protein [TgERP]), which elicited antibody and differentiated oocyst- versus tissue cyst-induced infection in pigs and mice. The recombinant protein was selected from a cDNA library constructed from T. gondii sporozoites; this protein was used in Western blots and probed with sera from T. gondii -infected humans. Serum antibody to TgERP was detected in humans within 6-8 mo of initial oocyst-acquired infection. Of 163 individuals in the acute stage of infection (anti- T. gondii IgM detected in sera, or < 30 in the IgG avidity test), 103 (63.2%) had detectable antibodies that reacted with TgERP. Of 176 individuals with unknown infection route and in the chronic stage of infection (no anti- T. gondii IgM detected in sera, or > 30 in the IgG avidity test), antibody to TgERP was detected in 31 (17.6%). None of the 132 uninfected individuals tested had detectable antibody to TgERP. These data suggest that TgERP may be useful in detecting exposure to sporozoites in early T. gondii infection and implicates oocysts as the agent of infection.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Antígenos de Protozoários/análise , Proteínas de Protozoários/análise , Toxoplasma/imunologia , Toxoplasmose/etiologia , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Western Blotting , Encéfalo/parasitologia , Gatos , Linhagem Celular , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Carne/parasitologia , Camundongos , Gravidez , Complicações Parasitárias na Gravidez/diagnóstico , Complicações Parasitárias na Gravidez/etiologia , Complicações Parasitárias na Gravidez/imunologia , Proteínas de Protozoários/imunologia , Suínos , Doenças dos Suínos/parasitologia , Doenças dos Suínos/transmissão , Toxoplasmose/diagnóstico , Toxoplasmose/transmissão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...