Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2020): 20232338, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593851

RESUMO

Transcriptomics provides a versatile tool for ecological monitoring. Here, through genome-guided profiling of transcripts mapping to 33 042 gene models, expression differences can be discerned among multi-year and seasonal leaf samples collected from American beech trees at two latitudinally separated sites. Despite a bottleneck due to post-Columbian deforestation, the single nucleotide polymorphism-based population genetic background analysis has yielded sufficient variation to account for differences between populations and among individuals. Our expression analyses during spring-summer and summer-autumn transitions for two consecutive years involved 4197 differentially expressed protein coding genes. Using Populus orthologues we reconstructed a protein-protein interactome representing leaf physiological states of trees during the seasonal transitions. Gene set enrichment analysis revealed gene ontology terms that highlight molecular functions and biological processes possibly influenced by abiotic forcings such as recovery from drought and response to excess precipitation. Further, based on 324 co-regulated transcripts, we focused on a subset of GO terms that could be putatively attributed to late spring phenological shifts. Our conservative results indicate that extended transcriptome-based monitoring of forests can capture diverse ranges of responses including air quality, chronic disease, as well as herbivore outbreaks that require activation and/or downregulation of genes collectively tuning reaction norms maintaining the survival of long living trees such as the American beech.


Assuntos
Fagus , Humanos , Estações do Ano , Fagus/genética , Folhas de Planta/fisiologia , Florestas , Árvores/fisiologia , Transcriptoma
2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
3.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857800

RESUMO

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , Solo
4.
Glob Chang Biol ; 29(12): 3409-3420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938951

RESUMO

Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1 year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1 year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.


Assuntos
Árvores , Clima Tropical , Biomassa , Florestas , Carbono
5.
Trends Ecol Evol ; 38(6): 579-590, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822929

RESUMO

Conserving the tree species of the world requires syntheses on which tree species are most vulnerable to pressing threats, such as climate change, invasive pests and pathogens, or selective logging. Here, we review the population and forest dynamics models that, when parameterized with data from population studies, forest inventories, or tree rings, have been used for identifying life-history strategies of species and threat-related changes in population demography and dynamics. The available evidence suggests that slow-growing and/or long-lived species are the most vulnerable. However, a lack of comparative, multi-species studies still challenges more precise predictions of the vulnerability of tree species to threats. Improving data coverage for mortality and recruitment, and accounting for interactions among threats, would greatly advance vulnerability assessments for conservation prioritizations of trees worldwide.


Assuntos
Conservação dos Recursos Naturais , Características de História de Vida , Florestas , Mudança Climática , Demografia
6.
Nature ; 608(7923): 552-557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948636

RESUMO

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Assuntos
Aquecimento Global , Estações do Ano , Temperatura , Árvores , Aclimatação , Biomassa , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Modelos Climáticos , Florestas , Aquecimento Global/estatística & dados numéricos , América do Norte , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Tempo , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo
7.
Biol Open ; 11(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876379

RESUMO

Lianas, climbing woody plants, influence the structure and function of tropical forests. Climbing traits have evolved multiple times, including ancestral groups such as gymnosperms and pteridophytes, but the genetic basis of the liana strategy is largely unknown. Here, we use a comparative transcriptomic approach for 47 tropical plant species, including ten lianas of diverse taxonomic origins, to identify genes that are consistently expressed or downregulated only in lianas. Our comparative analysis of full-length transcripts enabled the identification of a core interactomic network common to lianas. Sets of transcripts identified from our analysis reveal features related to functional traits pertinent to leaf economics spectrum in lianas, include upregulation of genes controlling epidermal cuticular properties, cell wall remodeling, carbon concentrating mechanism, cell cycle progression, DNA repair and a large suit of downregulated transcription factors and enzymes involved in ABA-mediated stress response as well as lignin and suberin synthesis. All together, these genes are known to be significant in shaping plant morphologies through responses such as gravitropism, phyllotaxy and shade avoidance.


Assuntos
Árvores , Clima Tropical , Florestas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Transcriptoma , Árvores/fisiologia
8.
Nature ; 608(7923): 528-533, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585230

RESUMO

Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.


Assuntos
Atmosfera , Estresse Fisiológico , Árvores , Clima Tropical , Água , Aclimatação , Atmosfera/química , Austrália , Biomassa , Carbono/metabolismo , Sequestro de Carbono , Desidratação , Aquecimento Global/estatística & dados numéricos , História do Século XX , História do Século XXI , Umidade , Densidade Demográfica , Risco , Fatores de Tempo , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/análise , Água/metabolismo
9.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
10.
Glob Chang Biol ; 28(4): 1414-1432, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741793

RESUMO

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.


Assuntos
Árvores , Clima Tropical , Mudança Climática , Florestas , Folhas de Planta
11.
New Phytol ; 233(2): 705-721, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716605

RESUMO

The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one-year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact ('excess mortality' associated with the risk, relative to stand-level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree-level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.


Assuntos
Árvores , Clima Tropical , Florestas , Fatores de Risco , Árvores/fisiologia
12.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653296

RESUMO

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Assuntos
Mudança Climática , Florestas , Biomassa , Clima , Temperatura
14.
New Phytol ; 231(5): 1798-1813, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33993520

RESUMO

Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.


Assuntos
Secas , Árvores , Florestas , Folhas de Planta , Água , Abastecimento de Água , Xilema
15.
New Phytol ; 230(2): 485-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33449384

RESUMO

The effects of climate change on tropical forests will depend on how diverse tropical tree species respond to drought. Current distributions of evergreen and deciduous tree species across local and regional moisture gradients reflect their ability to tolerate drought stress, and might be explained by functional traits. We measured leaf water potential at turgor loss (i.e. 'wilting point'; πtlp ), wood density (WD) and leaf mass per area (LMA) on 50 of the most abundant tree species in central Panama. We then tested their ability to explain distributions of evergreen and deciduous species within a 50 ha plot on Barro Colorado Island and across a 70 km rainfall gradient spanning the Isthmus of Panama. Among evergreen trees, species with lower πtlp were associated with drier habitats, with πtlp explaining 28% and 32% of habitat association on local and regional scales, respectively, greatly exceeding the predictive power of WD and LMA. In contrast, πtlp did not predict habitat associations among deciduous species. Across spatial scales, πtlp is a useful indicator of habitat preference for tropical tree species that retain their leaves during periods of water stress, and holds the potential to predict vegetation responses to climate change.


Assuntos
Folhas de Planta , Árvores , Colorado , Secas , Panamá , Clima Tropical , Água
16.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32789857

RESUMO

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Assuntos
Sequestro de Carbono , Ecossistema , Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática
17.
Nat Ecol Evol ; 5(2): 174-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199870

RESUMO

Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.


Assuntos
Florestas , Clima Tropical , Especificidade da Espécie , Árvores
18.
Glob Chang Biol ; 25(11): 3591-3608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343099

RESUMO

Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.


Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Estações do Ano
19.
Ecol Lett ; 22(11): 1940-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31359571

RESUMO

Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process-explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process-explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs - regulatory planning, extinction risk, climate refugia and invasive species - we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process-explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised.


Assuntos
Clima , Ecossistema , Mudança Climática , Demografia , Previsões , Modelos Biológicos
20.
New Phytol ; 222(3): 1284-1297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720871

RESUMO

Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine-scale observations critical to revealing ecological mechanisms underlying these changes have been lacking. To investigate fine-scale variation in leaf area with seasonality and drought we conducted monthly ground-based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structured LAI along axes of both canopy height and light environments. Upper canopy LAI increased during the dry season, whereas lower canopy LAI decreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understory LAI increased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015-2016 severe El Niño drought. Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.


Assuntos
Secas , Florestas , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Brasil , El Niño Oscilação Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...