Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(3): 878-887, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481682

RESUMO

Transfusion of stored red blood cells (RBCs) to patients is a critical component of human healthcare. Following purification from whole blood, RBCs are stored in one of many media known as additive solutions for up to 42 days. However, during the storage period, the RBCs undergo adverse chemical and physical changes that are often collectively known as the RBC storage lesion. Storage of RBCs in additive solutions modified to contain physiological levels of glucose, as opposed to hyperglycemic levels currently used in most cases, reduces certain markers of the storage lesion, although intermittent doses of glucose are required to maintain normoglycemic conditions. Here, we describe an electrically actuated valving system to dispense small volumes of glucose into 100 mL PVC storage bags containing packed RBCs from human donors. The RBCs were stored in a conventional additive solution (AS-1) or a normoglycemic version of AS-1 (AS-1N) and common markers of stored RBC health were measured at multiple time points throughout storage. The automated feeding device delivered precise and predictable volumes of concentrated glucose to maintain physiological glucose levels for up to 37 days. Hemolysis, lactate accumulation, and pH values of RBCs stored in AS-1N were statistically equivalent to values measured in AS-1, while significant reductions in osmotic fragility and intracellular sorbitol levels were measured in AS-1N. The reduction of osmotic fragility and oxidative stress markers in a closed system may lead to improved transfusion outcomes for an important procedure affecting millions of people each year.

2.
Lab Chip ; 22(7): 1310-1320, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35258064

RESUMO

A set of 3D-printed analytical devices were developed to investigate erythrocytes (ERYs) processed in conventional and modified storage solutions used in transfusion medicine. During storage, prior to transfusion into a patient recipient, ERYs undergo many chemical and physical changes that are not completely understood. However, these changes are thought to contribute to an increase in post-transfusion complications, and even an increase in mortality rates. Here, a reusable fluidic device (fabricated with additive manufacturing technologies) enabled the evaluation of ERYs prior to, and after, introduction into a stream of flowing fresh ERYs, thus representing components of an in vivo ERY transfusion on an in vitro platform. Specifically, ERYs stored in conventional and glucose-modified solutions were assayed by chemiluminescence for their ability to release flow-induced ATP. The ERY's deformability was also determined throughout the storage duration using a novel membrane transport approach housed in a 3D-printed scaffold. Results show that hyperglycemic conditions permanently alter ERY deformability, which may explain the reduced ATP release, as this phenomenon is related to cell deformability. Importantly, the reduced deformability and ATP release were reversible in an in vitro model of transfusion; specifically, when stored cells were introduced into a flowing stream of healthy cells, the ERY-derived release of ATP and cell deformability both returned to states similar to that of non-stored cells. However, after 1-2 weeks of storage, the deleterious effects of the storage were permanent. These results suggest that currently approved hyperglycemic storage solutions are having adverse effects on stored ERYs used in transfusion medicine and that normoglycemic storage may reduce the storage lesion, especially for cells stored for longer than 14 days.


Assuntos
Transfusão de Sangue , Eritrócitos , Trifosfato de Adenosina/farmacologia , Preservação de Sangue/efeitos adversos , Preservação de Sangue/métodos , Deformação Eritrocítica , Humanos , Impressão Tridimensional
3.
Front Physiol ; 12: 754638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803737

RESUMO

Metabolic homeostasis in animals depends critically on evolved mechanisms by which red blood cell (RBC) hemoglobin (Hb) senses oxygen (O2) need and responds accordingly. The entwined regulation of ATP production and antioxidant systems within the RBC also exploits Hb-based O2-sensitivity to respond to various physiologic and pathophysiologic stresses. O2 offloading, for example, promotes glycolysis in order to generate both 2,3-DPG (a negative allosteric effector of Hb O2 binding) and ATP. Alternatively, generation of the nicotinamide adenine dinucleotide phosphate (NADPH) critical for reducing systems is favored under the oxidizing conditions of O2 abundance. Dynamic control of ATP not only ensures the functional activity of ion pumps and cellular flexibility, but also contributes to the availability of vasoregulatory ATP that can be exported when necessary, for example in hypoxia or upon RBC deformation in microvessels. RBC ATP export in response to hypoxia or deformation dilates blood vessels in order to promote efficient O2 delivery. The ability of RBCs to adapt to the metabolic environment via differential control of these metabolites is impaired in the face of enzymopathies [pyruvate kinase deficiency; glucose-6-phosphate dehydrogenase (G6PD) deficiency], blood banking, diabetes mellitus, COVID-19 or sepsis, and sickle cell disease. The emerging availability of therapies capable of augmenting RBC ATP, including newly established uses of allosteric effectors and metabolite-specific additive solutions for RBC transfusates, raises the prospect of clinical interventions to optimize or correct RBC function via these metabolite delivery mechanisms.

4.
Am J Physiol Heart Circ Physiol ; 320(3): H1055-H1065, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449849

RESUMO

Pannexin 1 (Panx1) channels export ATP and may contribute to increased concentration of the vasodilator ATP in plasma during hypoxia in vivo. We hypothesized that Panx1 channels and associated ATP export contribute to hypoxic vasodilation, a mechanism that facilitates the matching of oxygen delivery to metabolic demand of tissue. Male and female mice devoid of Panx1 (Panx1-/-) and wild-type controls (WT) were anesthetized, mechanically ventilated, and instrumented with a carotid artery catheter or femoral artery flow transducer for hemodynamic and plasma ATP monitoring during inhalation of 21% (normoxia) or 10% oxygen (hypoxia). ATP export from WT vs. Panx1-/-erythrocytes (RBC) was determined ex vivo via tonometer experimentation across progressive deoxygenation. Mean arterial pressure (MAP) was similar in Panx1-/- (n = 6) and WT (n = 6) mice in normoxia, but the decrease in MAP in hypoxia seen in WT was attenuated in Panx1-/- mice (-16 ± 9% vs. -2 ± 8%; P < 0.05). Hindlimb blood flow (HBF) was significantly lower in Panx1-/- (n = 6) vs. WT (n = 6) basally, and increased in WT but not Panx1-/- mice during hypoxia (8 ± 6% vs. -10 ± 13%; P < 0.05). Estimation of hindlimb vascular conductance using data from the MAP and HBF experiments showed an average response of 28% for WT vs. -9% for Panx1-/- mice. Mean venous plasma ATP during hypoxia was 57% lower in Panx1-/- (n = 6) vs. WT mice (n = 6; P < 0.05). Mean hypoxia-induced ATP export from RBCs from Panx1-/- mice (n = 8) was 82% lower than that from WT (n = 8; P < 0.05). Panx1 channels participate in hemodynamic responses consistent with hypoxic vasodilation by regulating hypoxia-sensitive extracellular ATP levels in blood.NEW & NOTEWORTHY Export of vasodilator ATP from red blood cells requires pannexin 1. Blood plasma ATP elevations in response to hypoxia in mice require pannexin 1. Hemodynamic responses to hypoxia are accompanied by increased plasma ATP in mice in vivo and require pannexin 1.


Assuntos
Trifosfato de Adenosina/sangue , Conexinas/sangue , Eritrócitos/metabolismo , Hemodinâmica , Membro Posterior/irrigação sanguínea , Hipóxia/sangue , Proteínas do Tecido Nervoso/sangue , Oxigênio/sangue , Animais , Pressão Arterial , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Hiperemia/sangue , Hiperemia/genética , Hiperemia/fisiopatologia , Hipotensão/sangue , Hipotensão/genética , Hipotensão/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fluxo Sanguíneo Regional , Vasodilatação
5.
Proc Natl Acad Sci U S A ; 117(27): 15884-15894, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576698

RESUMO

The skin of humans and animals is colonized by commensal and pathogenic fungi and bacteria that share this ecological niche and have established microbial interactions. Malassezia are the most abundant fungal skin inhabitant of warm-blooded animals and have been implicated in skin diseases and systemic disorders, including Crohn's disease and pancreatic cancer. Flavohemoglobin is a key enzyme involved in microbial nitrosative stress resistance and nitric oxide degradation. Comparative genomics and phylogenetic analyses within the Malassezia genus revealed that flavohemoglobin-encoding genes were acquired through independent horizontal gene transfer events from different donor bacteria that are part of the mammalian microbiome. Through targeted gene deletion and functional complementation in Malassezia sympodialis, we demonstrated that bacterially derived flavohemoglobins are cytoplasmic proteins required for nitric oxide detoxification and nitrosative stress resistance under aerobic conditions. RNA-sequencing analysis revealed that endogenous accumulation of nitric oxide resulted in up-regulation of genes involved in stress response and down-regulation of the MalaS7 allergen-encoding genes. Solution of the high-resolution X-ray crystal structure of Malassezia flavohemoglobin revealed features conserved with both bacterial and fungal flavohemoglobins. In vivo pathogenesis is independent of Malassezia flavohemoglobin. Lastly, we identified an additional 30 genus- and species-specific horizontal gene transfer candidates that might have contributed to the evolution of this genus as the most common inhabitants of animal skin.


Assuntos
Bactérias/genética , Hemeproteínas/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Malassezia/genética , Malassezia/metabolismo , Óxido Nítrico/metabolismo , Pele/microbiologia , Animais , Bactérias/metabolismo , Cristalografia por Raios X , Ergosterol/biossíntese , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Transferência Genética Horizontal , Hemeproteínas/química , Hemeproteínas/metabolismo , Humanos , Malassezia/classificação , Modelos Moleculares , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Filogenia , Pele/metabolismo , Simbiose
6.
Front Physiol ; 10: 1417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803068

RESUMO

Healthy red blood cells (RBCs) deform readily in response to shear stress in the circulation, facilitating their efficient passage through capillaries. RBCs also export vasoactive mediators in response to deformation and other physiological and pathological stimuli. Deoxygenation of RBC hemoglobin leads to the export of vasodilator and antiadhesive S-nitrosothiols (SNOs) and adenosine triphosphate (ATP) in parallel with oxygen transport in the respiratory cycle. Together, these mediated responses to shear stress and oxygen offloading promote the efficient flow of blood cells and in turn optimize oxygen delivery. In diseases including sickle cell anemia and conditions including conventional blood banking, these adaptive functions may be compromised as a result, for example, of limited RBC deformability, impaired mediator formation, or dysfunctional mediator export. Ongoing work, including single cell approaches, is examining relevant mechanisms and remedies in health and disease.

7.
Blood Adv ; 3(17): 2586-2597, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31484636

RESUMO

Sickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as S-nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro, and vessel obstruction in vivo. Because transfusion is frequently used in SCD, we also determined the effects of banked (SNO-depleted) red blood cells (RBCs) on vaso-occlusion in vivo. Fresh or 14-day-old normal RBCs (AARBCs) reduced epinephrine-activated SSRBC adhesion to the vascular endothelium and prevented vaso-occlusion. In contrast, AARBCs stored for 30 days failed to decrease activated SSRBC adhesivity or vaso-occlusion, unless these RBCs were loaded with NO. Furthermore, NO loading of SSRBCs increased S-nitrosohemoglobin and modulated epinephrine's effect by upregulating phosphorylation of membrane proteins, including pyruvate kinase, E3 ubiquitin ligase, and the cytoskeletal protein 4.1. Thus, abnormal SSRBC NO/SNO content both contributes to the vaso-occlusive pathophysiology of SCD, potentially by affecting at least protein phosphorylation, and is potentially amenable to correction by (S)NO repletion or by RBC transfusion.


Assuntos
Anemia Falciforme/complicações , Adesão Celular/efeitos dos fármacos , Eritrócitos/patologia , Óxido Nítrico/farmacologia , Doenças Vasculares/prevenção & controle , Anemia Falciforme/etiologia , Anemia Falciforme/fisiopatologia , Endotélio Vascular/metabolismo , Transfusão de Eritrócitos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio/farmacologia , Fosforilação/efeitos dos fármacos , Doenças Vasculares/etiologia
8.
PLoS One ; 13(12): e0209201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30576340

RESUMO

Intact red blood cells (RBCs) are required for phenotypic analyses. In order to allow separation (time and location) between subject encounter and sample analysis, we developed a research-specific RBC cryopreservation protocol and assessed its impact on data fidelity for key biochemical and physiological assays. RBCs drawn from healthy volunteers were aliquotted for immediate analysis or following glycerol-based cryopreservation, thawing, and deglycerolization. RBC phenotype was assessed by (1) scanning electron microscopy (SEM) imaging and standard morphometric RBC indices, (2) osmotic fragility, (3) deformability, (4) endothelial adhesion, (5) oxygen (O2) affinity, (6) ability to regulate hypoxic vasodilation, (7) nitric oxide (NO) content, (8) metabolomic phenotyping (at steady state, tracing with [1,2,3-13C3]glucose ± oxidative challenge with superoxide thermal source; SOTS-1), as well as in vivo quantification (following human to mouse RBC xenotransfusion) of (9) blood oxygenation content mapping and flow dynamics (velocity and adhesion). Our revised glycerolization protocol (40% v/v final) resulted in >98.5% RBC recovery following freezing (-80°C) and thawing (37°C), with no difference compared to the standard reported method (40% w/v final). Full deglycerolization (>99.9% glycerol removal) of 40% v/v final samples resulted in total cumulative lysis of ~8%, compared to ~12-15% with the standard method. The post cryopreservation/deglycerolization RBC phenotype was indistinguishable from that for fresh RBCs with regard to physical RBC parameters (morphology, volume, and density), osmotic fragility, deformability, endothelial adhesivity, O2 affinity, vasoregulation, metabolomics, and flow dynamics. These results indicate that RBC cryopreservation/deglycerolization in 40% v/v glycerol final does not significantly impact RBC phenotype (compared to fresh cells).


Assuntos
Preservação de Sangue/métodos , Criopreservação/métodos , Eritrócitos/metabolismo , Animais , Adesão Celular , Crioprotetores , Deformação Eritrocítica , Índices de Eritrócitos , Transfusão de Eritrócitos , Eritrócitos/ultraestrutura , Glicerol , Voluntários Saudáveis , Hemoglobinas/metabolismo , Humanos , Metaboloma , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Fragilidade Osmótica , Fenótipo , Transplante Heterólogo
9.
Cardiovasc Res ; 114(13): 1806-1815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931051

RESUMO

Aims: The actin-binding protein Drebrin is up-regulated in response to arterial injury and reduces smooth muscle cell (SMC) migration and proliferation through its interaction with the actin cytoskeleton. We, therefore, tested the hypothesis that SMC Drebrin inhibits angiotensin II-induced remodelling of the proximal aorta. Methods and results: Angiotensin II was administered via osmotic minipumps at 1000 ng/kg/min continuously for 28 days in SM22-Cre+/Dbnflox/flox (SMC-Dbn-/-) and control mice. Blood pressure responses to angiotensin II were assessed by telemetry. After angiotensin II infusion, we assessed remodelling in the proximal ascending aorta by echocardiography and planimetry of histological cross sections. Although the degree of hypertension was equivalent in SMC-Dbn-/- and control mice, SMC-Dbn-/- mice nonetheless exhibited 60% more proximal aortic medial thickening and two-fold more outward aortic remodelling than control mice in response to angiotensin II. Proximal aortas demonstrated greater cellular proliferation and matrix deposition in SMC-Dbn-/- mice than in control mice, as evidenced by a higher prevalence of proliferating cell nuclear antigen-positive nuclei and higher levels of collagen I. Compared with control mouse aortas, SMC-Dbn-/- aortas demonstrated greater angiotensin II-induced NADPH oxidase activation and inflammation, evidenced by higher levels of Ser-536-phosphorylated NFκB p65 subunits and higher levels of vascular cell adhesion molecule-1, matrix metalloproteinase-9, and adventitial macrophages. Conclusions: We conclude that SMC Drebrin deficiency augments angiotensin II-induced inflammation and adverse aortic remodelling.


Assuntos
Angiotensina II , Doenças da Aorta/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neuropeptídeos/metabolismo , Remodelação Vascular , Animais , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Pressão Arterial , Proliferação de Células , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células HEK293 , Humanos , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , NADPH Oxidases/metabolismo , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Transfusion ; 58(1): 255-266, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29243830

RESUMO

The US Food and Drug Administration (FDA) held a workshop on red blood cell (RBC) product regulatory science on October 6 and 7, 2016, at the Natcher Conference Center on the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop was supported by the National Heart, Lung, and Blood Institute, NIH; the Department of Defense; the Office of the Assistant Secretary for Health, Department of Health and Human Services; and the Center for Biologics Evaluation and Research, FDA. The workshop reviewed the status and scientific basis of the current regulatory framework and the available scientific tools to expand it to evaluate innovative and future RBC transfusion products. A full record of the proceedings is available on the FDA website (http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm507890.htm). The contents of the summary are the authors' opinions and do not represent agency policy.


Assuntos
Eritrócitos , United States Food and Drug Administration , Adulto , Animais , Produtos Biológicos , Preservação de Sangue/normas , Segurança do Sangue/normas , Criança , Transfusão de Eritrócitos , Humanos , Modelos Animais , Ensaios Clínicos Controlados Aleatórios como Assunto , Reação Transfusional , Estados Unidos , United States Food and Drug Administration/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA