Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 14(3): e1002422, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27031949

RESUMO

Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.


Assuntos
Recifes de Corais , China , Conservação dos Recursos Naturais/legislação & jurisprudência , Internacionalidade/legislação & jurisprudência
2.
Malar J ; 14: 492, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643110

RESUMO

BACKGROUND: The development of insecticide resistance and the increased outdoor-biting behaviour of malaria vectors reduce the efficiency of indoor vector control methods. Attractive toxic sugar baits (ATSBs), a method targeting the sugar-feeding behaviours of vectors both indoors and outdoors, is a promising supplement to indoor tools. The number and configuration of these ATSB stations needed for malaria control in a community needs to be determined. METHODS: A hypothetical village, typical of those in sub-Saharan Africa, 600 × 600 m, consisting of houses, humans and essential resource requirements of Anopheles gambiae (sugar sources, outdoor resting sites, larval habitats) was simulated in a spatial individual-based model. Resource-rich and resource-poor environments were simulated separately. Eight types of configurations and different densities of ATSB stations were tested. Anopheles gambiae population size, human biting rate (HBR) and entomological inoculation rates (EIR) were compared between different ATSB configurations and densities. Each simulated scenario was run 50 times. RESULTS: Compared to the outcomes not altered by ATSB treatment in the control scenario, in resource-rich and resource-poor environments, respectively, the optimum ATSB treatment reduced female abundance by 98.22 and 91.80 %, reduced HBR by 99.52 and 98.15 %, and reduced EIR by 99.99 and 100 %. In resource-rich environments, n × n grid design, stations at sugar sources, resting sites, larval habitats, and random locations worked better in reducing vector population and HBRs than other configurations (P < 0.0001). However, there was no significant difference of EIR reductions between all ATSB configurations (P > 0.05). In resource-poor environments, there was no significant difference of female abundances, HBRs and EIRs between all ATSB configurations (P > 0.05). The optimum number of ATSB stations was about 25 for resource-rich environments and nine for resource-poor environments. CONCLUSIONS: ATSB treatment reduced An. gambiae population substantially and reduced EIR to near zero regardless of environmental resource availability. In resource-rich environments, dispersive configurations worked better in reducing vector population, and stations at or around houses worked better in preventing biting and parasite transmission. In resource-poor environments, all configurations worked similarly. Optimum numbers of bait stations should be adjusted according to seasonality when resource availability changes.


Assuntos
Anopheles , Controle de Mosquitos , África , Animais , Carboidratos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Humanos , Longevidade/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/prevenção & controle , Modelos Teóricos , Controle de Mosquitos/economia , Densidade Demográfica
3.
Malar J ; 14: 59, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652678

RESUMO

BACKGROUND: Agent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour. METHODS: A spatial IBM containing An. gambiae mosquitoes and humans, as well as the village environment of houses, sugar sources, resting sites and larval habitat sites was developed. Anopheles gambiae behaviour rules were attributed at each step of the IBM: resting, host seeking, sugar feeding and breeding. Each step represented one second of time, and each simulation was set to run for 60 days and repeated 50 times. Scenarios of different densities and spatial distributions of sugar sources and outdoor resting sites were simulated and compared. RESULTS: When the number of natural sugar sources was increased from 0 to 100 while the number of resting sites was held constant, mean daily survival rate increased from 2.5% to 85.1% for males and from 2.5% to 94.5% for females, mean human biting rate increased from 0 to 0.94 bites per human per day, and mean daily abundance increased from 1 to 477 for males and from 1 to 1,428 for females. When the number of outdoor resting sites was increased from 0 to 50 while the number of sugar sources was held constant, mean daily survival rate increased from 77.3% to 84.3% for males and from 86.7% to 93.9% for females, mean human biting rate increased from 0 to 0.52 bites per human per day, and mean daily abundance increased from 62 to 349 for males and from 257 to 1120 for females. All increases were significant (P < 0.01). Survival was greater when sugar sources were randomly distributed in the whole village compared to clustering around outdoor resting sites or houses. CONCLUSIONS: Increases in densities of sugar sources or outdoor resting sites significantly increase the survival and human biting rates of An. gambiae mosquitoes. Survival of An. gambiae is more supported by random distribution of sugar sources than clustering of sugar sources around resting sites or houses. Density and spatial distribution of natural sugar sources and outdoor resting sites modulate vector populations and human biting rates, and thus malaria parasite transmission.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Ecossistema , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Animais , Comportamento Alimentar , Feminino , Humanos , Masculino , Comportamento Sexual Animal , Análise de Sobrevida
4.
Adm Policy Ment Health ; 39(4): 301-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22160786

RESUMO

What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted.


Assuntos
Pesquisa Participativa Baseada na Comunidade/organização & administração , Disseminação de Informação/métodos , Relações Interprofissionais , Transtornos Mentais/prevenção & controle , Serviços de Saúde Mental/organização & administração , Comportamento Cooperativo , Humanos , Organizações , Avaliação de Programas e Projetos de Saúde , Parcerias Público-Privadas , Projetos de Pesquisa , Pesquisadores , Estados Unidos
5.
Ecology ; 90(10): 2859-67, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19886494

RESUMO

Recent outbreaks of coral bleaching and disease have contributed to substantial declines in the abundance of reef-building coral. Significant attention has been paid to both phenomena in order to determine their effect on reef trajectories. Although each is positively correlated with high temperatures, few studies have explored the potential links between bleaching and disease. A longitudinal study of corals in the Florida Keys was therefore conducted during the 2005 Caribbean bleaching event to quantify bleaching extent and disease incidence in corals, and to determine whether they were related or if they acted as discrete phenomena. These data indicated that overall, a positive correlation exists between bleaching extent and disease incidence. However, the specific interactions between these two phenomena varied among disease bleaching combinations. Montastraea faveolata colonies with greater bleaching intensities later developed white plague (WP) infections. Meanwhile, Siderastrea siderea colonies with dark spot disease (DS) bleached more extensively than apparently healthy colonies. Finally, bleaching and black band disease (BB) co-occurred on Colpophyllia natans throughout the bleaching event. WP, BB, and bleaching are each independently capable of changing the structure of coral populations through loss of living tissue, and DS is an important indicator of reef health. Understanding the dynamics of how these mortality sources interact is critical to understanding mortality patterns and predicting how reef communities will respond to future events.


Assuntos
Antozoários/microbiologia , Animais , Ecossistema , Monitoramento Ambiental , Florida , Interações Hospedeiro-Patógeno , Temperatura
6.
Dis Aquat Organ ; 87(1-2): 117-33, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20095247

RESUMO

Coral disease is playing a significant role in structuring today's coral reef communities. While monitoring programs document declines associated with coral disease, there is a lack of tools that can test hypotheses of disease incidence and control. Here, we describe a modeling tool developed to test hypotheses about the spread and impact of white plague disease in diverse coral populations distributed across heterogeneous reef landscapes. The model Simulation of Infected Corals (SICO) was based on the dynamics of white plague over the course of 6 yr of monitoring on the fore-reefs of Little Cayman (Cayman Islands, British West Indies). A pattern-oriented modeling approach using a genetic algorithm was used to calibrate model parameters that describe disease introduction, transmissibility, and host susceptibility. Simulation patterns most accurately reflected patterns observed at study sites when disease was introduced at regular intervals and was transmissible within a limited area. Projecting forward in time, coral cover tended to drop precipitously until colonies were so sparse that disease transmission among colonies was rare. A sensitivity analysis of disease parameters indicated that the effect of changing disease parameters depended on the type of coral community, but that in communities dominated by susceptible species, local preventative measures were generally more effective than treatment measures in limiting disease impact.


Assuntos
Antozoários/microbiologia , Simulação por Computador , Modelos Biológicos , Algoritmos , Animais , Região do Caribe , Conservação dos Recursos Naturais , Monitoramento Ambiental , Oceanos e Mares , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...