Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531898

RESUMO

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

2.
Am J Med Genet A ; 191(8): 2156-2163, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227088

RESUMO

Joubert syndrome (JBTS) is a Mendelian disorder of the primary cilium defined by the clinical triad of hypotonia, developmental delay, and a distinct cerebellar malformation called the molar tooth sign. JBTS is inherited in an autosomal recessive, autosomal dominant, or X-linked recessive manner. Though over 40 genes have been identified as causal for JBTS, molecular diagnosis is not made in 30%-40% of individuals who meet clinical criteria. TOPORS encodes topoisomerase I-binding arginine/serine-rich protein, and homozygosity for a TOPORS missense variant (c.29C > A; p.(Pro10Gln)) was identified in individuals with the ciliopathy oral-facial-digital syndrome in two families of Dominican descent. Here, we report an additional proband of Dominican ancestry with JBTS found by exome sequencing to be homozygous for the identical p.(Pro10Gln) TOPORS missense variant. Query of the Mount Sinai BioMe biobank, which includes 1880 individuals of Dominican ancestry, supports a high carrier frequency of the TOPORS p.(Pro10Gln) variant in individuals of Dominican descent. Our data nominates TOPORS as a novel causal gene for JBTS and suggests that TOPORS variants should be considered in the differential of ciliopathy-spectrum disease in individuals of Dominican ancestry.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Malformações do Sistema Nervoso , Humanos , Cerebelo/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Retina/anormalidades , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Ciliopatias/genética
3.
J Am Med Inform Assoc ; 30(7): 1274-1283, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080563

RESUMO

OBJECTIVE: We sought to develop and evaluate an electronic health record (EHR) genetic testing tracking system to address the barriers and limitations of existing spreadsheet-based workarounds. MATERIALS AND METHODS: We evaluated the spreadsheet-based system using mixed effects logistic regression to identify factors associated with delayed follow up. These factors informed the design of an EHR-integrated genetic testing tracking system. After deployment, we assessed the system in 2 ways. We analyzed EHR access logs and note data to assess patient outcomes and performed semistructured interviews with users to identify impact of the system on work. RESULTS: We found that patient-reported race was a significant predictor of documented genetic testing follow up, indicating a possible inequity in care. We implemented a CDS system including a patient data capture form and management dashboard to facilitate important care tasks. The system significantly sped review of results and significantly increased documentation of follow-up recommendations. Interviews with key system users identified a range of sociotechnical factors (ie, tools, tasks, collaboration) that contribute to safer and more efficient care. DISCUSSION: Our new tracking system ended decades of workarounds for identifying and communicating test results and improved clinical workflows. Interview participants related that the system decreased cognitive and time burden which allowed them to focus on direct patient interaction. CONCLUSION: By assembling a multidisciplinary team, we designed a novel patient tracking system that improves genetic testing follow up. Similar approaches may be effective in other clinical settings.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Registros Eletrônicos de Saúde , Humanos , Seguimentos , Software , Testes Genéticos
4.
Am J Med Genet A ; 188(12): 3416-3422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906847

RESUMO

Telemedicine has long been considered as an attractive alternative methodology in clinical genetics to improve patient access and convenience. Given the importance of the dysmorphology physical examination and anthropometric measurement in clinical genetics, many have wondered if lost information would hamper diagnosis. We previously addressed this question by analyzing thousands of diagnostic encounters in a single practice involving multiple practitioners and found no evidence for a difference in new molecular diagnosis rates. However, our previous study design resulted in variability in providers between in-person and telemedicine evaluation groups. To address this in our present study, we expanded our analysis to 1104 new patient evaluations seen by one highly experienced clinical geneticist across two 10-month periods before and after the start of the COVID-19 pandemic. Comparing patients seen in-person to those seen by telemedicine, we found significant differences in race and ethnicity, preferred language, and home zip code median income. The clinical geneticist intended to send more genetic testing for those patients seen by telemedicine, but due to issues with test authorization and sample collection, there was no difference in ultimate completion rate between groups. We found no significant difference in new molecular diagnosis rate. Overall, we find telemedicine to be an acceptable alternative to in-person evaluation for routine pediatric clinical genetics care.


Assuntos
COVID-19 , Médicos , Telemedicina , Criança , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , Telemedicina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...