Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105626, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211818

RESUMO

Mitochondrial electron transport chain complexes organize into supramolecular structures called respiratory supercomplexes (SCs). The role of respiratory SCs remains largely unconfirmed despite evidence supporting their necessity for mitochondrial respiratory function. The mechanisms underlying the formation of the I1III2IV1 "respirasome" SC are also not fully understood, further limiting insights into these processes in physiology and diseases, including neurodegeneration and metabolic syndromes. NDUFB4 is a complex I accessory subunit that contains residues that interact with the subunit UQCRC1 from complex III, suggesting that NDUFB4 is integral for I1III2IV1 respirasome integrity. Here, we introduced specific point mutations to Asn24 (N24) and Arg30 (R30) residues on NDUFB4 to decipher the role of I1III2-containing respiratory SCs in cellular metabolism while minimizing the functional consequences to complex I assembly. Our results demonstrate that NDUFB4 point mutations N24A and R30A impair I1III2IV1 respirasome assembly and reduce mitochondrial respiratory flux. Steady-state metabolomics also revealed a global decrease in citric acid cycle metabolites, affecting NADH-generating substrates. Taken together, our findings highlight an integral role of NDUFB4 in respirasome assembly and demonstrate the functional significance of SCs in regulating mammalian cell bioenergetics.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Células HEK293
2.
Cell Mol Immunol ; 20(10): 1140-1155, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553427

RESUMO

Natural killer (NK) cells are predominant innate lymphocytes that initiate the early immune response during infection. NK cells undergo a metabolic switch to fuel augmented proliferation and activation following infection. Tumor necrosis factor-alpha (TNFα) is a well-known inflammatory cytokine that enhances NK cell function; however, the mechanism underlying NK cell proliferation in response to TNFα is not well established. Here, we demonstrated that upon infection/inflammation, NK cells upregulate the expression of TNF receptor 2 (TNFR2), which is associated with increased proliferation, metabolic activity, and effector function. Notably, IL-18 can induce TNFR2 expression in NK cells, augmenting their sensitivity toward TNFα. Mechanistically, TNFα-TNFR2 signaling upregulates the expression of CD25 (IL-2Rα) and nutrient transporters in NK cells, leading to a metabolic switch toward aerobic glycolysis. Transcriptomic analysis revealed significantly reduced expression levels of genes involved in cellular metabolism and proliferation in NK cells from TNFR2 KO mice. Accordingly, our data affirmed that genetic ablation of TNFR2 curtails CD25 upregulation and TNFα-induced glycolysis, leading to impaired NK cell proliferation and antiviral function during MCMV infection in vivo. Collectively, our results delineate the crucial role of the TNFα-TNFR2 axis in NK cell proliferation, glycolysis, and effector function.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Matadoras Naturais , Citocinas/metabolismo , Proliferação de Células
3.
Cell Rep ; 37(6): 109958, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758301

RESUMO

Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.


Assuntos
Diabetes Mellitus/patologia , Dislipidemias/patologia , Gluconeogênese , Fígado/patologia , Sulfetos/metabolismo , Tiossulfato Sulfurtransferase/fisiologia , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dislipidemias/etiologia , Dislipidemias/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteoma/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32024308

RESUMO

Background: Environmental toxicants such as methylmercury, polychlorinated biphenyls, and organochlorine pesticides are potentially harmful pollutants present in contaminated food, soil, air, and water. Exposure to these ecologically relevant toxicants is prominent in Northern Canadian populations. Previous work focused on toxicant exposure during pregnancy as a threat to fetal neurodevelopment. However, little is known about the individual and combined effects of these toxicants on maternal health during pregnancy and post-partum. Methods: A scoping review was conducted to synthesize the current knowledge regarding individual and combined effects of methylmercury, polychlorinated biphenyls, and organochlorine pesticides on maternal behaviour and the maternal brain. Relevant studies were identified through the PubMed, Embase, and Toxline databases. Literature involving animal models and one human cohort were included in the review. Results: Research findings indicate that exposures to these environmental toxicants are associated with neurochemical changes in rodent models. Animal models provided the majority of information on toxicant-induced alterations in maternal care behaviours. Molecular and hormonal changes hypothesized to underlie these alterations were also addressed, although studies assessing toxicant co-exposure were limited. Conclusion: This review speaks to the limited knowledge regarding effects of these persistent organic pollutants on the maternal brain and related behavioural outcomes. Further research is required to better comprehend any such effects on maternal brain and behaviour, as maternal care is an important contributor to offspring neurodevelopment.


Assuntos
Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Hidrocarbonetos Clorados/toxicidade , Comportamento Materno/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Praguicidas/toxicidade , Animais , Regiões Árticas , Feminino , Humanos , Exposição Materna/efeitos adversos
5.
Hypertension ; 72(1): 235-246, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29844144

RESUMO

Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O2- (lucigenin), H2O2 (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidases/metabolismo , Animais , Fracionamento Celular , Células Cultivadas , Modelos Animais de Doenças , Eletromiografia , Hipertensão/patologia , Hipertensão/fisiopatologia , Immunoblotting , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Oxirredução , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo
6.
ACS Comb Sci ; 17(7): 426-32, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26098936

RESUMO

Solid-phase synthesis of purine derivatives bearing an α-amino acid motif in position 9 is described herein. Polymer supported amines were acylated with various Fmoc-α-amino acids and, after cleavage of the protecting group, arylation with 4,6-dichloro-5-nitropyrimidine or 2,4-dichloro-5-nitropyrimidine was performed. The second chlorine atom was replaced with various amines. Subsequent reduction of the nitro group, followed by reaction with aldehydes, afforded the purine scaffold. After cleavage from the polymer support, the target compounds were obtained in very good crude purity, good overall yields, and excellent enantiomeric purity. The anticancer activity of prepared compounds was tested in vitro against human cancer cell lines MCF7 and K562, and they were found to have mild, but clear dose-dependent effects.


Assuntos
Aminoácidos/química , Polímeros/química , Purinas/síntese química , Estrutura Molecular , Purinas/química
7.
ACS Comb Sci ; 16(5): 221-4, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725158

RESUMO

Simple solid-phase synthesis of 3,10-dihydro-2H-benzo[e]imidazo[1,2-b][1,2,4]thiadiazin-2-one 5,5-dioxides is described, with Fmoc-α-amino acids and 2-nitrobenzenesulfonyl chlorides (2-NosCls) being the key building blocks. Fmoc-α-amino acids were immobilized on Wang resin and transformed to the corresponding 2-nitrobenzenesulfonamides in two steps. After reduction of the nitro group, Fmoc-thioureas were synthesized followed by cyclization of the 1,2,4-benzothiadiazine-1,1-dioxide scaffold with diisopropylcarbodiimide (DIC). Cleavage of the Fmoc protecting group followed by spontaneous cyclative cleavage gave the target products in excellent crude purity.


Assuntos
Fibrinolíticos/síntese química , Quinazolinas/síntese química , Aminoácidos/química , Técnicas de Química Combinatória , Ciclização , Fibrinolíticos/química , Fluorenos/química , Quinazolinas/química , Técnicas de Síntese em Fase Sólida , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química
8.
Org Biomol Chem ; 10(24): 4752-8, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22588594

RESUMO

Reductive desulfurisation of dithiocarbamates is conveniently achieved using H(3)PO(2)-Et(3)N-ACCN in refluxing dioxane. Fused and spirocyclic ß-lactams, prepared through 4-exo trig carbamoyl radical cyclisation-dithiocarbamate group transfer reactions, are reduced without fragmentation of the strained 4-membered ring. Diethyl tetraacetyl-d-glucopyranosyl dithiocarbamate is selectively reduced with or without acyloxy group migration depending on reaction conditions and choice of reductant. Deuterium incorporation from D(3)PO(2)-Et(3)N is observed for a system involving a nucleophilic radical intermediate, but not in the case of the electrophilic radical obtained through acyloxy group migration on a glucose derivative.


Assuntos
Tiocarbamatos/química , Ciclização , Radicais Livres/química , Estrutura Molecular , Oxirredução , Compostos de Espiro/síntese química , Estanho/química , beta-Lactamas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...