Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38787381

RESUMO

Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [(TC), n=13 (5F/8M), 28±1 yrs] or 160 IU of intranasal insulin administered over five min [n=15 (5F/10M), 26±2 yrs]; five (1F/4M) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, 15, and 30 minutes following insulin administration. Leg vascular conductance (LVC = [LBF ÷ mean BP] x 100) was calculated. Venous insulin and glucose concentrations remained unchanged throughout (p>0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15: 121±8%; minute 30: 118±6%; p=0.009, n=7) and mean BP (baseline = 100%; minute 15: 103±1%; minute 30: 102±1%; p=0.003) increased, while LVC decreased (baseline = 100%; minute 15: 93±3%; minute 30: 99±3%; p=0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (p>0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.

2.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999645

RESUMO

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Feminino , Células Endoteliais/metabolismo , Receptor de Insulina/metabolismo , Fosfatidilserinas/metabolismo , Neuraminidase/metabolismo , Insulina/metabolismo , Desintegrinas , Proteína ADAM17/metabolismo , Anoctaminas/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801046

RESUMO

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Camundongos , Humanos , Animais , Zanamivir/farmacologia , Neuraminidase/química , Neuraminidase/farmacologia , Células Endoteliais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia
4.
Mult Scler Relat Disord ; 79: 105002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716212

RESUMO

PURPOSE: Using a 12-week, randomized controlled trial coupled with social cognitive theory behavioral coaching, we aimed to assess the effect of a home-based aerobic training intervention versus an attention-control on aerobic fitness, subclinical atherosclerosis, and mobility in persons with MS. METHODS: Persons with MS with an expanded disability status scale score between 0 and 4 were randomized to a 12-week aerobic exercise (EX) (n = 26; 19 females; 49 yrs; 28.8 kg/m2) or attention-control (CON) condition (stretching; n = 22; 16 females; 44 yrs; 29.2 kg/m2). Aerobic capacity was assessed via a graded cycle ergometry test with indirect calorimetry. The co-primary measures of subclinical atherosclerosis assessed included carotid intima media thickness, a test of vasodilatory reactivity, and arterial stiffness. Mobility was assessed via a timed 25-foot walk test (T25FW) and a 6 min walk test. The EX group engaged in cycle ergometry 3d/wk with gradual increases in the intensity and duration of the exercise sessions. CON participated in standardized stretching designed to provide the same contact time as EX 3d/wk. Behavioral coaching took place via weekly phone/video chats to track adherence. RESULTS: Aerobic capacity, vasodilatory reactivity, and T25FW speed increased only in the EX group, 7%, 16%, and 13% (p<0.05), respectively; whereas the CON group did not change. CONCLUSION: The EX group had modest, yet significant, increases in aerobic capacity over the 12-week period, coupled with improvements in T25FW speed and vasodilatory reactivity. A home-based exercise intervention can improve outcomes of a subclinical marker of atherosclerosis, which provides a basis for examining these outcomes in persons prescreened for CVD-related comorbidities and/or mobility issues.


Assuntos
Aterosclerose , Esclerose Múltipla , Feminino , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Terapia por Exercício , Espessura Intima-Media Carotídea , Exercício Físico , Aterosclerose/terapia
5.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622084

RESUMO

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Feminino , Masculino , Camundongos , Animais , Resistência à Insulina/fisiologia , Insulina , Obesidade , Redução de Peso , Artéria Femoral , Dieta
6.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083795

RESUMO

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Rigidez Vascular , Actinas , Animais , Células Endoteliais , Humanos , Artérias Mesentéricas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Óxido Nítrico Sintase , Obesidade/complicações , Peptídeos/farmacologia , Rigidez Vascular/fisiologia
7.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974454

RESUMO

Vascular insulin resistance is a feature of obesity and type 2 diabetes that contributes to the genesis of vascular disease and glycemic dysregulation. Data from preclinical models indicate that vascular insulin resistance is an early event in the disease course, preceding the development of insulin resistance in metabolically active tissues. Whether this is translatable to humans requires further investigation. To this end, we examined if vascular insulin resistance develops when young healthy individuals (n = 18 men, n = 18 women) transition to an obesogenic lifestyle that would ultimately cause whole-body insulin resistance. Specifically, we hypothesized that short-term (10 days) exposure to reduced ambulatory activity (from >10 000 to <5000 steps/day) and increased consumption of sugar-sweetened beverages (6 cans/day) would be sufficient to prompt vascular insulin resistance. Furthermore, given that incidence of insulin resistance and cardiovascular disease is lower in premenopausal women than in men, we postulated that young females would be protected against vascular insulin resistance. Consistent with this hypothesis, we report that after reduced ambulation and increased ingestion of carbonated beverages high in sugar, young healthy men, but not women, exhibited a blunted leg blood flow response to insulin and suppressed skeletal muscle microvascular perfusion. These findings were associated with a decrease in plasma adropin and nitrite concentrations. This is the first evidence in humans that vascular insulin resistance can be provoked by short-term adverse lifestyle changes. It is also the first documentation of a sexual dimorphism in the development of vascular insulin resistance in association with changes in adropin levels.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Glicemia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Feminino , Humanos , Insulina , Estilo de Vida , Masculino , Nitritos
8.
Am J Physiol Endocrinol Metab ; 322(4): E355-E365, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35187960

RESUMO

Muscle sympathetic nerve activity (MSNA) increases during hyperinsulinemia, primarily attributed to central nervous system effects. Whether peripheral vasodilation induced by insulin further contributes to increased MSNA via arterial baroreflex-mediated mechanisms requires further investigation. Accordingly, we examined baroreflex modulation of the MSNA response to hyperinsulinemia. We hypothesized that rescuing peripheral resistance with coinfusion of the vasoconstrictor phenylephrine would attenuate the MSNA response to hyperinsulinemia. We further hypothesized that the insulin-mediated increase in MSNA would be recapitulated with another vasodilator (sodium nitroprusside, SNP). In 33 young healthy adults (28 M/5F), MSNA (microneurography) and arterial blood pressure (BP, Finometer/brachial catheter) were measured, and total peripheral resistance (TPR, ModelFlow) and baroreflex sensitivity were calculated at rest and during intravenous infusion of insulin (n = 20) or SNP (n = 13). A subset of participants receiving insulin (n = 7) was coinfused with phenylephrine. Insulin infusion decreased TPR (P = 0.01) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity or BP (P > 0.05). Coinfusion with phenylephrine returned TPR and MSNA to baseline, with no effect on arterial baroreflex sensitivity (P > 0.05). Similar to insulin, SNP decreased TPR (P < 0.02) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity (P > 0.12). Acute hyperinsulinemia shifts the baroreflex stimulus-response curve to higher MSNA without changing sensitivity, likely due to insulin's peripheral vasodilatory effects. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.NEW & NOTEWORTHY We hypothesized that elevation in muscle sympathetic nervous system activity (MSNA) during hyperinsulinemia is mediated by its peripheral vasodilator effect on the arterial baroreflex. Using three separate protocols in humans, we observed increases in both MSNA and cardiac output during hyperinsulinemia, which we attributed to the baroreflex response to peripheral vasodilation induced by insulin. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.


Assuntos
Barorreflexo , Hiperinsulinismo , Adulto , Pressão Sanguínea , Frequência Cardíaca , Humanos , Insulina/farmacologia , Músculo Esquelético , Fenilefrina/farmacologia , Sistema Nervoso Simpático , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...