Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38758627

RESUMO

This work proposes a novel method of temporal signal-to-noise ratio (SNR) guided adaptive acoustic output adjustment and demonstrates this approach during in vivo fetal imaging. Acoustic output adjustment is currently the responsibility of sonographers, but ultrasound safety studies show recommended ALARA (As Low As Reasonably Achievable) practices are inconsistently followed. This study explores an automated ALARA method that adjusts the Mechanical Index (MI) output, targeting imaging conditions matching the temporal noise perception threshold. A 28 dB threshold SNR is used as the target SNR, following prior work showing relevant noise quantities are imperceptible once this image data quality level is reached. After implementing adaptive output adjustment on a clinical system, the average MI required to achieve 28 dB SNR in an eleven-volunteer fetal abdomen imaging test ranged from 0.17 to 0.26. The higher MI levels were required when imaging at higher frequencies. During tests with 20-second MI adjustment imaging periods, the degree of motion impacted the adaptive performance. For stationary imaging views, target SNR levels were maintained in 90% of SNR evaluations. When scanning between targets the imaging conditions were more variable, but the target SNR was still maintained in 71% of the evaluations. Given the relatively low MI recommended when performing MI adjustment and the successful adjustment of MI in response to changing imaging conditions, these results encourage adoption of adaptive acoustic output approaches guided by temporal SNR.

2.
Ultrason Imaging ; 46(3): 151-163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497455

RESUMO

This work measures temporal signal-to-noise ratio (SNR) thresholds that indicate when random noise during ultrasound scanning becomes imperceptible to expert human observers. Visible noise compromises image quality and can potentially lead to non-diagnostic scans. Noise can arise from both stable acoustic sources (clutter) or randomly varying electronic sources (temporal noise). Extensive engineering effort has focused on decreasing noise in both of these categories. In this work, an observer study with five practicing sonographers was performed to assess sonographer sensitivity to temporal noise in ultrasound cine clips. Understanding the conditions where temporal noise is no longer visible during ultrasound imaging can inform engineering efforts seeking to minimize the impact this noise has on image quality. The sonographers were presented with paired temporal noise-free and noise-added simulated speckle cine clips and asked to select the noise-added clips. The degree of motion in the imaging target was found to have a significant effect on the SNR levels where noise was perceived, while changing imaging frequency had little impact. At realistic in vivo motion levels, temporal noise was not perceived in cine clips at and above 28 dB SNR. In a case study presented here, the potential of adaptive intensity adjustment based on this noise perception threshold is validated in a fetal imaging scenario. This study demonstrates how noise perception thresholds can be applied to help design or tune ultrasound systems for different imaging tasks and noise conditions.


Assuntos
Razão Sinal-Ruído , Ultrassonografia , Humanos , Ultrassonografia/métodos , Variações Dependentes do Observador , Feminino
3.
Artigo em Inglês | MEDLINE | ID: mdl-35507609

RESUMO

The objective of this work was to develop an automated region of the interest selection method to use for adaptive imaging. The as low as reasonably achievable (ALARA) principle is the recommended framework for setting the output level of diagnostic ultrasound devices, but studies suggest that it is not broadly observed. One way to address this would be to adjust output settings automatically based on image quality feedback, but a missing link is determining how and where to interrogate the image quality. This work provides a method of region of interest selection based on standard, envelope-detected image data that are readily available on ultrasound scanners. Image brightness, the standard deviation of the brightness values, the speckle signal-to-noise ratio, and frame-to-frame correlation were considered as image characteristics to serve as the basis for this selection method. Region selection with these filters was compared to results from image quality assessment at multiple acoustic output levels. After selecting the filter values based on data from 25 subjects, testing on ten reserved subjects' data produced a positive predictive value of 94% using image brightness, the speckle signal-to-noise ratio, and frame-to-frame correlation. The best case filter values for using only image brightness and speckle signal-to-noise ratio had a positive predictive value of 97%. These results suggest that these simple methods of filtering could select reliable regions of interest during live scanning to facilitate adaptive ALARA imaging.


Assuntos
Algoritmos , Humanos , Razão Sinal-Ruído , Ultrassonografia/métodos
4.
J Matern Fetal Neonatal Med ; 34(11): 1805-1813, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31352874

RESUMO

RATIONALE AND OBJECTIVES: Two-dimensional (2D) ultrasound (US) is operator dependent, requiring operator skill and experience to selectively identify and record planes of interest for subsequent interpretation. This limits the utility of US in settings in which expert sonographers are unavailable. Three-dimensional (3D) US acquisition of an anatomic target, which enables reconstruction of any plane through the acquired volume, might reduce operator dependence by providing any desired image plane for interpretation, without identification of target planes of interest at the time of acquisition. We applied a low-cost 3DUS technology because of the wider potential application compared with dedicated 3DUS systems. We chose second trimester fetal biometric parameters for study because of their importance in maternal-fetal health globally. We hypothesized that expert and novice interpretations of novice-acquired 3D volumes would not differ from each other nor from expert measurements of expert-acquired 2D images, the clinical reference standard. MATERIALS AND METHODS: This was a prospective, blinded, observational study. Expert sonographers blinded to 3DUS volumes acquired 2DUS images of second trimester fetuses from 32 subjects, and expert readers performed interpretation, during usual care. A novice sonographer blinded to other clinical data acquired oriented 3DUS image volumes of the same subjects on the same date. Expert readers blinded to other data assessed placental location (PL), fetal presentation (FP), and amniotic fluid volume (AFV) in novice-acquired 3D volumes. Novice and expert raters blinded to other data independently measured biparietal diameter (BPD), humerus length (HL), and femur length (FL) for each fetus from novice-acquired 3D volumes. Corresponding gestational age (GA) estimates were calculated. Inter-rater reliability of measurements and GAs (expert 3D versus expert 2D, novice 3D versus expert 2D, and expert 3D versus novice 3D) were assessed by intraclass correlation coefficient (ICC). Mean inter-rater measurement differences were analyzed using one-way ANOVA. RESULTS: 3D volume acquisition and reconstruction required mean 30.4 s (±5.7) and 70.0 s (±24.0), respectively. PL, FP, and AFV were evaluated from volumes for all subjects; mean time for evaluation was 16 s (±0.0). PL, FP, and AFV could be evaluated for all subjects. At least one biometric measurement was possible for 31 subjects (97%). Agreement between rater pairs for a composite of all measures was excellent (ICCs ≥ 0.95), and for individual measures was good to excellent (ICCs ≥ 0.75). Inter-rater differences were not significant (p > .05). CONCLUSIONS: Expert and novice interpretations of novice-acquired 3DUS volumes of second trimester fetuses provided reliable biometric measures compared with expert interpretation of expert-acquired 2DUS images. 3DUS volume acquisition with a low-cost system may reduce operator dependence of ultrasound.


Assuntos
Imageamento Tridimensional , Ultrassonografia Pré-Natal , Feminino , Idade Gestacional , Humanos , Placenta/diagnóstico por imagem , Gravidez , Segundo Trimestre da Gravidez , Estudos Prospectivos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...