Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(4): ofae144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567194

RESUMO

Background: The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent vs separate administration of these vaccines remains unclear. Methods: Here, we analyzed antibody responses in health care workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or on different days through systems serology. Antibody-binding and functional responses were characterized at peak responses and after 6 months following vaccination. Results: IgG1 and neutralization responses to SARS-CoV-2 XBB.1.5 were higher at peak and after 6 months following concurrent administration as compared with separate administration of the COVID-19 and influenza vaccines. While similar results were not observed for influenza responses, no interference was noted with concurrent administration. Conclusions: These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 neutralizing antibody responses while maintaining responses against influenza.

2.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464001

RESUMO

Antibodies represent a primary mediator of protection against respiratory viruses such as SARS-CoV-2. Serum neutralizing antibodies (NAbs) are often considered a primary correlate of protection. However, detailed antibody profiles including characterization of antibody functions in different anatomic compartments are not well understood. Here we show that antibody correlates of protection against SARS-CoV-2 challenge are different in systemic versus mucosal compartments in rhesus macaques. In serum, neutralizing antibodies were the strongest correlate of protection and were linked to Spike-specific binding antibodies and other extra-neutralizing antibody functions that create a larger protective network. In contrast, in bronchiolar lavage (BAL), antibody-dependent cellular phagocytosis (ADCP) proved the strongest correlate of protection rather than NAbs. Within BAL, ADCP was linked to mucosal Spike-specific IgG, IgA/secretory IgA, and Fcγ-receptor binding antibodies. Our results support a model in which antibodies with different functions mediate protection at different anatomic sites. The correlation of ADCP and other Fc functional antibody responses with protection in BAL suggests that these antibody responses may be critical for protection against SARS-CoV-2 Omicron challenge in mucosa.

3.
Sci Adv ; 10(8): eadj9945, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394195

RESUMO

Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.


Assuntos
Formação de Anticorpos , Imunoglobulina G , Anticorpos Neutralizantes , Imunização , RNA Mensageiro/genética , Vacinas de mRNA
4.
Nat Commun ; 15(1): 905, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291080

RESUMO

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses are compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Lactente , Humanos , Pré-Escolar , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinação , Imunidade Humoral , RNA Mensageiro , Anticorpos Antivirais
5.
NPJ Vaccines ; 9(1): 7, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182593

RESUMO

With the continued emergence of variants of concern, the global threat of COVID-19 persists, particularly in low- and middle-income countries with limited vaccine access. Protein-based vaccines, such as SCB-2019, can be produced on a large scale at a low cost while antigen design and adjuvant use can modulate efficacy and safety. While effective humoral immunity against SARS-CoV-2 variants has been shown to depend on both neutralization and Fc-mediated immunity, data on the effectiveness of protein-based vaccines with enhanced Fc-mediated immunity is limited. Here, we assess the humoral profile, including antibody isotypes, subclasses, and Fc receptor binding generated by a boosting with a recombinant trimer-tag protein vaccine SCB-2019. Individuals who were primed with 2 doses of the ChAdOx1 vaccine were equally divided into 4 groups and boosted with following formulations: Group 1: 9 µg SCB-2019 and Alhydrogel; Group 2: 9 µg SCB-2019, CpG 1018, and Alhydrogel; Group 3: 30 µg SCB-2019, CpG 1018, and Alhydrogel; Group 4: ChAdOx1. Group 3 showed enhanced antibody FcγR binding against wild-type and variants compared to Groups 1 and 2, showing a dose-dependent enhancement of immunity conferred by the SCB-2019 vaccine. Moreover, from day 15 after vaccination, Group 3 exhibited higher IgG3 and FcγR binding across variants of concerns, including Omicron and its subvariants, compared to the ChAdOx1-boosted individuals. Overall, this highlights the potential of SCB-2019 as a cost-efficient boosting regimen effective across variants of concerns.

6.
J Immunol ; 212(1): 24-34, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975667

RESUMO

Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Humanos , Imunidade Humoral , Estações do Ano , Vacinação , Hemaglutininas , Vacinas Atenuadas , Vacinas de Produtos Inativados , Anticorpos Antivirais
7.
mBio ; 15(1): e0303623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112418

RESUMO

Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.


Assuntos
Anticorpos , Receptores Fc , Receptores Fc/metabolismo , Imunidade , Isotipos de Imunoglobulinas , Processamento de Proteína Pós-Traducional
8.
Cell Rep ; 42(11): 113292, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007686

RESUMO

The reduced effectiveness of COVID-19 vaccines due to the emergence of variants of concern (VOCs) necessitated the use of vaccine boosters to bolster protection against disease. However, it remains unclear how boosting expands protective breadth when primary vaccine platforms are distinct and how boosters containing VOC spike(s) broaden humoral responses. Here, we report that boosters composed of recombinant spike antigens of ancestral (prototype) and Beta VOCs elicit a robust, pan-VOC, and multi-functional humoral response in non-human primates largely independent of the primary vaccine series platform. Interestingly, Beta-spike-containing boosters stimulate immunoglobulin A (IgA) with a greater breadth of recognition in protein-primed recipients when administered with adjuvant system 03 (AS03). Our results highlight the utility of a component-based booster strategy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for broad humoral recognition, independent of primary vaccine series. This is of high global health importance given the heterogeneity of primary vaccination platforms distributed.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Macaca , Formação de Anticorpos , COVID-19/prevenção & controle , Anticorpos Antivirais , Anticorpos Neutralizantes
9.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745590

RESUMO

The bivalent COVID-19 mRNA boosters became available in fall 2022 and were recommended alongside the seasonal influenza vaccine. However, the immunogenicity of concurrent versus separate administration of these vaccines remains unclear. Here, we analyzed antibody responses in healthcare workers who received the bivalent COVID-19 booster and the influenza vaccine on the same day or different days. IgG1 responses to SARS-CoV-2 Spike were higher at peak immunogenicity and 6 months following concurrent administration compared with separate administration of the COVID-19 and influenza vaccines. These data suggest that concurrent administration of these vaccines may yield higher and more durable SARS-CoV-2 antibody responses.

10.
Nat Biomed Eng ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679571

RESUMO

To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.

11.
mBio ; 14(4): e0090223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37535402

RESUMO

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos , Anticorpos Antivirais , Anticorpos Neutralizantes
12.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37577655

RESUMO

Altering the route of Bacille Calmette-Guérin (BCG) immunization from low-dose intradermal vaccination to high-dose intravenous (IV) vaccination resulted in a high level of protection against Mycobacterium tuberculosis ( Mtb ) infection, providing an opportunity to uncover immune correlates and mechanisms of protection. In addition to strong T cell immunity, IV BCG vaccination was associated with a robust expansion of humoral immune responses that tracked with bacterial control. However, given the near complete protection afforded by high-dose IV BCG immunization, a precise correlate of immune protection was difficult to define. Here we leveraged plasma and bronchoalveolar lavage fluid (BAL) from a cohort of rhesus macaques that received decreasing doses of IV BCG and aimed to define the correlates of immunity across macaques that experienced immune protection or breakthrough infection following Mtb challenge. We show an IV BCG dose-dependent induction of mycobacterial-specific humoral immune responses, both in the plasma and in the airways. Moreover, antibody responses at peak immunogenicity significantly predicted bacterial control following challenge. Multivariate analyses revealed antibody-mediated complement and NK cell activating humoral networks as key functional signatures associated with protective immunity. Collectively, this work extends our understanding of humoral biomarkers and potential mechanisms of IV BCG mediated protection against Mtb .

13.
Cell Chem Biol ; 30(7): 701-702, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37478826

RESUMO

In this issue, McConnell et al.10 demonstrate that COVID-19 convalescent plasma (CCP)-derived antibodies can neutralize SARS-CoV-2 by proteolytically cleaving the spike protein. The CCP antibody-mediated catalysis has broader implications beyond COVID-19 and can be applicable in understanding the mechanism of antibody-based neutralization of different pathogens.


Assuntos
Anticorpos Catalíticos , COVID-19 , Humanos , Soroterapia para COVID-19 , SARS-CoV-2 , Anticorpos , Anticorpos Neutralizantes
14.
J Extracell Vesicles ; 12(6): e12327, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272197

RESUMO

Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.


Assuntos
Vesículas Extracelulares , Heparina , Heparina/farmacologia , Heparina/análise , Heparina/química , Espectrometria de Massas em Tandem , Células Endoteliais , Vesículas Extracelulares/química , Cromatografia de Afinidade/métodos
15.
Sci Immunol ; 8(88): eadg7015, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37191508

RESUMO

Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Animais , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Imunoglobulina G
16.
Front Microbiol ; 14: 1171990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228375

RESUMO

Introduction: Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods: Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results: Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions: These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.

17.
Res Sq ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066325

RESUMO

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we used a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses were compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicited a stronger functional antibody response than adults, including against variant of concerns (VOCs), without report of side effects. Moreover, mRNA vaccination was associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.

18.
Cell Rep ; 42(4): 112402, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061918

RESUMO

The 2013 Ebola epidemic in Central and West Africa heralded the emergence of wide-spread, highly pathogenic viruses. The successful recombinant vector vaccine against Ebola (rVSVΔG-ZEBOV-GP) will limit future outbreaks, but identifying mechanisms of protection is essential to protect the most vulnerable. Vaccine-induced antibodies are key determinants of vaccine efficacy, yet the mechanism by which vaccine-induced antibodies prevent Ebola infection remains elusive. Here, we exploit a break in long-term vaccine efficacy in non-human primates to identify predictors of protection. Using unbiased humoral profiling that captures neutralization and Fc-mediated functions, we find that antibodies specific for soluble glycoprotein (sGP) drive neutrophil-mediated phagocytosis and predict vaccine-mediated protection. Similarly, we show that protective sGP-specific monoclonal antibodies have elevated neutrophil-mediated phagocytic activity compared with non-protective antibodies, highlighting the importance of sGP in vaccine protection and monoclonal antibody therapeutics against Ebola virus.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Glicoproteínas , Anticorpos Antivirais , Primatas , Anticorpos Monoclonais , Vacinas Sintéticas
19.
Nat Microbiol ; 8(4): 569-580, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012355

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacina de mRNA-1273 contra 2019-nCoV , Receptores de IgG/genética , Vacina BNT162 , COVID-19/prevenção & controle , Anticorpos Antivirais , Camundongos Knockout
20.
Cell Rep ; 42(4): 112326, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000623

RESUMO

Group 2B ß-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.


Assuntos
Alphavirus , COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Antivirais , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...