Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 524(2): 380-407, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26224429

RESUMO

Upper extremity hemiplegia is a common consequence of unilateral cortical stroke. Understanding the role of the unaffected cerebral hemisphere in the motor recovery process has been encouraged, in part, by the presence of ipsilateral corticospinal projections (iCSP). We examined the neuroplastic response of the iCSP from the contralesional primary motor cortex (cM1) hand/arm area to spinal levels C5-T1 after spontaneous long-term recovery from isolated frontal lobe injury and isolated frontoparietal injury. High-resolution tract tracing, stereological, and behavioral methodologies were applied. Recovery from frontal motor injury resulted in enhanced numbers of terminal labeled boutons in the iCSP from cM1 compared with controls. Increases occurred in lamina VIII and the adjacent ventral sectors of lamina VII, which are involved in axial/proximal limb sensorimotor processing. Larger frontal lobe lesions were associated with greater numbers of terminal boutons than smaller frontal lobe lesions. In contrast, frontoparietal injury blocked this response; total bouton number was similar to controls, demonstrating that disruption of somatosensory input to one hemisphere has a suppressive effect on the iCSP from the nonlesioned hemisphere. However, compared with controls, elevated bouton numbers occurred in lamina VIII, at the expense of lamina VII bouton labeling. Lamina IX boutons were also elevated in two frontoparietal lesion cases with extensive cortical injury. Because laminae VIII and IX collectively harbor axial, proximal, and distal motoneurons, therapeutic intervention targeting the ipsilateral corticospinal linkage from cM1 may promote proximal, and possibly distal, upper-limb motor recovery following frontal and frontoparietal injury.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Lobo Parietal/patologia , Tratos Piramidais/fisiopatologia , Animais , Modelos Animais de Doenças , Isoquinolinas/metabolismo , Macaca mulatta , Microinjeções , Tratos Piramidais/patologia
2.
J Comp Neurol ; 523(4): 669-97, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349147

RESUMO

Concurrent damage to the lateral frontal and parietal cortex is common following middle cerebral artery infarction, leading to upper extremity paresis, paresthesia, and sensory loss. Motor recovery is often poor, and the mechanisms that support or impede this process are unclear. Since the medial wall of the cerebral hemisphere is commonly spared following stroke, we investigated the spontaneous long-term (6 and 12 month) effects of lateral frontoparietal injury (F2P2 lesion) on the terminal distribution of the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2) at spinal levels C5 to T1. Isolated injury to the frontoparietal arm/hand region resulted in a significant loss of contralateral corticospinal boutons from M2 compared with controls. Specifically, reductions occurred in the medial and lateral parts of lamina VII and the dorsal quadrants of lamina IX. There were no statistical differences in the ipsilateral CSP. Contrary to isolated lateral frontal motor injury (F2 lesion), which results in substantial increases in contralateral M2 labeling in laminae VII and IX (McNeal et al. [2010] J. Comp. Neurol. 518:586-621), the added effect of adjacent parietal cortex injury to the frontal motor lesion (F2P2 lesion) not only impedes a favorable compensatory neuroplastic response but results in a substantial loss of M2 CSP terminals. This dramatic reversal of the CSP response suggests a critical trophic role for cortical somatosensory influence on spared ipsilesional frontal corticospinal projections, and that restoration of a favorable compensatory response will require therapeutic intervention.


Assuntos
Lobo Frontal/lesões , Lobo Parietal/lesões , Tratos Piramidais/patologia , Animais , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Lateralidade Funcional , Mãos/fisiopatologia , Imuno-Histoquímica , Macaca mulatta , Masculino , Atividade Motora/fisiologia , Técnicas de Rastreamento Neuroanatômico , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Fotomicrografia , Terminações Pré-Sinápticas/patologia , Tratos Piramidais/fisiopatologia , Recuperação de Função Fisiológica , Fatores de Tempo
3.
Brain Res Bull ; 87(4-5): 457-97, 2012 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-22240273

RESUMO

The cytoarchitecture and cortical connections of the anterior cingulate, medial and dorsal premotor, and precentral region are investigated using the Nissl and NeuN staining methods and the fluorescent retrograde tract tracing technique. There is a gradual stepwise laminar change in the cytoarchitectonic organization from the proisocortical anterior cingulate region, through the lower and upper banks of the cingulate sulcus, to the dorsolateral isocortical premotor and precentral motor regions of the frontal lobe. These changes are characterized by a gradational emphasis on the lower stratum layers (V and VI) in the proisocortical cingulate region to the upper stratum layers (II and III) in the premotor and precentral motor region. This is accompanied by a progressive widening of layers III and VI, a poorly delineated border between layers III and V and a sequential increase in the size of layer V neurons culminating in the presence of giant Betz cells in the precentral motor region. The overall patterns of corticocortical connections paralleled the sequential changes in cytoarchitectonic organization. The proisocortical areas have connections with cingulate motor, supplementary motor, premotor and precentral motor areas on the one hand and have widespread connections with the frontal, parietal, temporal and multimodal association cortex and limbic regions on the other. The dorsal premotor areas have connections with the proisocortical areas including cingulate motor areas and supplementary motor area on the one hand, and premotor and precentral motor cortex on the other. Additionally, this region has significant connections with posterior parietal cortex and limited connections with prefrontal, limbic and multimodal regions. The precentral motor cortex also has connections with the proisocortical areas and premotor areas. Its other connections are limited to the somatosensory regions of the parietal lobe. Since the isocortical motor areas on the dorsal convexity mediate voluntary motor function, their close connectional relationship with the cingulate areas form a pivotal limbic-motor interface that could provide critical sources of cognitive, emotional and motivational influence on complex motor function.


Assuntos
Encéfalo/citologia , Vias Neurais/citologia , Animais , Imuno-Histoquímica , Macaca mulatta
4.
Neuroscience ; 151(1): 12-27, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18055128

RESUMO

The primate facial nucleus is a prominent brainstem structure that is composed of cell bodies giving rise to axons forming the facial nerve. It is musculotopically organized, but we know little about the morphological features of its motor neurons. Using the Lucifer Yellow intracellular filling method, we examined 11 morphological parameters of motor neurons innervating the monkey orbicularis oculi (OO) muscle, which plays an important role in eyelid closure and voluntary and emotional facial expressions. All somata were multipolar and remained confined to the intermediate subnucleus, as did the majority of its aspiny dendritic branches. We found a mean maximal cell diameter of 54 microm in the transverse dimension, cell diameter of 60 microm in the rostrocaudal dimension, somal surface area of 17,500 microm(2) and somal volume of 55,643 microm(3). Eight neurons were used in the analysis of dendritic parameters based upon complete filling of the distal segments of the dendritic tree. We found a mean number of 16 dendritic segments, an average dendritic length of 1036 microm, diameter of 7 microm, surface area of 12,757 microm(2) and total volume of 16,923 microm(3). Quantitative analysis of the dendritic branch segments demonstrated that the average number, diameter and volume gradually diminished from proximal to distal segments. A Sholl analysis revealed that the highest number of dendritic intersections occurred 60 microm distal to the somal center with a gradual reduction of intersections occurring distally. These observations advance our understanding of the morphological organization of the primate facial nucleus and provide structural features for comparative studies, interpreting afferent influence on OO function and for designing studies pinpointing structural alterations in OO motor neurons that may accompany disorders affecting facial movement.


Assuntos
Neurônios Motores/ultraestrutura , Músculos Oculomotores/inervação , Animais , Axônios/ultraestrutura , Contagem de Células , Dendritos/ultraestrutura , Nervo Facial/citologia , Nervo Facial/fisiologia , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Isoquinolinas , Macaca fascicularis , Macaca mulatta , Masculino , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA