Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 994: 27-35, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12851295

RESUMO

The agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin receptors MC3R and MC4R found in the hypothalamus and exhibits potent orexigenic activity. The cysteine-rich C-terminal domain of this protein, corresponding to AGRP(87-132), exhibits receptor binding affinity and antagonism equivalent to that of the full-length protein. We recently determined the NMR structure of AGRP(87-132) and demonstrated that a portion of the domain adopts the inhibitor cystine-knot fold. Remarkably, this is the first identification of a mammalian protein with this specific architecture. Further analysis of the structure suggests that melanocortin receptor contacts are made primarily by two loops presented within the cystine knot. (10) To test this hypothesis we designed a 34-residue AGRP analogue corresponding to only the cystine knot. We found that this designed miniprotein folds to a homogeneous product, retains the desired cystine-knot architecture, functions as a potent antagonist, and maintains the melanocortin receptor pharmacological profile of AGRP(87-132). (26) The AGRP-like activity of this molecule supports the hypothesis that indeed the cystine-knot region possesses the melanocortin receptor contacts. Based on these design and structure studies, we propose that the N-terminal loop of AGRP(87-132) makes contact with a receptor exoloop and helps confer AGRP's selectivity for the central MCRs.


Assuntos
Proteínas/química , Proteínas/metabolismo , Proteína Relacionada com Agouti , Sequência de Aminoácidos , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/genética , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores da Corticotropina/metabolismo , Alinhamento de Sequência
2.
FEBS Lett ; 529(2-3): 243-8, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12372608

RESUMO

A new approach for site-directed placement of nitroxide spin labels in chemically synthesized peptides and proteins is described. The scheme takes advantage of a novel diaminopropionic acid scaffold to independently control backbone and side chain elongation. The result is a spin-labeled side chain, referred to as Dap-SL, in which an amide bond forms a linker between the nitroxide and the peptide backbone. The method was demonstrated in a series of helical peptides. Circular dichroism and nuclear magnetic resonance showed that Dap-SL introduces only a minor perturbation in the helical structure. The electron paramagnetic resonance spectrum of the singly labeled species allowed for determination of the spin label rotational correlation time and suggests that the Dap-SL side chain is more flexible than the modified Cys side chain frequently used in site-directed spin label studies. Spectra of the doubly labeled peptides indicate a mixture of 3(10)-helix and alpha-helix, which parallels findings from previous studies. The scheme demonstrated here offers a fundamentally new approach for introducing spin labels into proteins and promises to significantly extend biophysical investigations of large proteins and receptors. In addition, the technique is readily modified for incorporation of any biophysical probe.


Assuntos
Óxidos de Nitrogênio/química , Peptídeos/química , Proteínas/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...