Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0498122, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38051049

RESUMO

IMPORTANCE: Activation of the host transcription factor TFEB helps mammalian cells adapt to stresses such as starvation and infection by upregulating lysosome, autophagy, and immuno-protective gene expression. Thus, TFEB is generally thought to protect host cells. However, it may also be that pathogenic bacteria like Salmonella orchestrate TFEB in a spatio-temporal manner to harness its functions to grow intracellularly. Indeed, the relationship between Salmonella and TFEB is controversial since some studies showed that Salmonella actively promotes TFEB, while others have observed that Salmonella degrades TFEB and that compounds that promote TFEB restrict bacterial growth. Our work provides a path to resolve these apparent discordant observations since we showed that stationary-grown Salmonella actively delays TFEB after infection, while late-log Salmonella is permissive of TFEB activation. Nevertheless, the exact function of this manipulation remains unclear, but conditions that erase the conditional control of TFEB by Salmonella may be detrimental to the microbe.


Assuntos
Macrófagos , Serina-Treonina Quinases TOR , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Autofagia/fisiologia , Lisossomos/fisiologia , Salmonella , Mamíferos
2.
Infect Immun ; 91(1): e0051822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36533918

RESUMO

Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.


Assuntos
Proteínas de Escherichia coli , Peptídeo Hidrolases , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Serina Endopeptidases/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Escherichia coli/genética
3.
FEMS Microbiol Lett ; 369(1)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36208952

RESUMO

Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Infecções por Escherichia coli , Doenças Inflamatórias Intestinais , Humanos , Escherichia coli/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aderência Bacteriana/genética , Doença de Crohn/patologia , Peptídeo Hidrolases , Mucosa Intestinal
4.
Sci Rep ; 11(1): 23315, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857794

RESUMO

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Desenvolvimento de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Benzamidas/farmacologia , Linhagem Celular , Simulação por Computador , Coronavirus/química , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Triazinas/farmacologia , Tratamento Farmacológico da COVID-19
5.
Am J Physiol Endocrinol Metab ; 321(3): E338-E350, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280051

RESUMO

Obesity is associated with metabolic, immunological, and infectious disease comorbidities, including an increased risk of enteric infection and inflammatory bowel disease such as Crohn's disease (CD). Expansion of intestinal pathobionts such as adherent-invasive Escherichia coli (AIEC) is a common dysbiotic feature of CD, which is amplified by prior use of oral antibiotics. Although high-fat, high-sugar diets are associated with dysbiotic expansion of E. coli, it is unknown if the content of fat or another dietary component in obesogenic diets is sufficient to promote AIEC expansion. Here, we found that administration of an antibiotic combined with feeding mice an obesogenic low-fiber, high-sucrose, high-fat diet (HFD) that is typically used in rodent-obesity studies promoted AIEC intestinal expansion. Even a short-term (i.e., 1 day) pulse of HFD feeding before infection was sufficient to promote AIEC expansion, indicating that the magnitude of obesity was not the main driver of AIEC expansion. Controlled-diet experiments demonstrated that neither dietary fat nor sugar were the key determinants of AIEC colonization, but that lowering dietary fiber from approximately 13% to 5%-6% was sufficient to promote the intestinal expansion of AIEC when combined with antibiotics in mice. When combined with antibiotics, lowering fiber promoted AIEC intestinal expansion to a similar extent as widely used HFDs in mice. However, lowering dietary fiber was sufficient to promote AIEC intestinal expansion without affecting body mass. Our results show that low dietary fiber combined with oral antibiotics are environmental factors that promote the expansion of Crohn's disease-associated pathobionts in the gut.NEW & NOTEWORTHY It is commonly thought that obesity or a high-fat diet alters pathogenic bacteria and promotes inflammatory gut diseases. We found that lower dietary fiber is a key factor that expands a gut pathobiont linked to Crohn's disease, independent of obesity status in mice.


Assuntos
Doença de Crohn/microbiologia , Fibras na Dieta/administração & dosagem , Intestinos/microbiologia , Obesidade/microbiologia , Animais , Escherichia coli/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Microbiology (Reading) ; 166(12): 1149-1159, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33205745

RESUMO

Colonization of the gastrointestinal tract by enterohaemorrhagic Escherichia coli (EHEC) is critically dependent on its ability to sense and respond to various microenvironments within the host. EHEC exposure to physiologically relevant levels of bile salts upregulates the two-component system, pmrAB, and the arnBCADTEF operon, resulting in lipopolysaccharide modification and increased resistance to the cationic antimicrobial peptide, polymyxin B (PMB). A similar pmrAB- and arn-dependent PMB resistance has been observed in Salmonella enterica in the presence of ferric iron. Limiting magnesium levels and mild acid can also induce Salmonella resistance to PMB through another two-component system, PhoPQ and the connector protein, PmrD. This study aims to evaluate the relative contributions of a bile-salt mix (BSM), iron, limiting magnesium as well as the roles of pmrAB, phoPQ and pmrD to EHEC's resistance to PMB. Killing assays show that EHEC treatment with the BSM or iron under excess magnesium and neutral pH conditions induces a pmrAB-dependent, phoP-independent PMB resistance. By contrast, exposure to limiting magnesium triggers a pmrB-, phoP- and pmrD-dependent PMB resistance. The iron-induced PMB resistance is independent of phoP and pmrD under limiting magnesium conditions while the bile-salt-induced PMB resistance is independent of pmrD only under non-PhoP-inducing conditions. GFP-pmrD transcriptional reporter studies reveal that the limiting magnesium enhances pmrD expression, which is repressed upon additional exposure to either BSM or iron. Our results also show that exposure to mild acid enhances PMB resistance in a pmrD-independent manner and GFP reporter results confirm minimal expression of pmrD at this pH regardless of the magnesium level. This study provides novel insights into how EHEC differentially employs PmrAB, PhoPQ and PmrD to monitor and respond to bile salts, iron, acidic pH and magnesium typically encountered within the gastrointestinal tract in order to modulate its survival against cationic antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácidos e Sais Biliares/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/fisiologia , Ferro/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Polimixina B/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Inflamm Bowel Dis ; 25(1): 33-44, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321333

RESUMO

Inflammatory bowel diseases are becoming increasingly common throughout the world, both in developed countries and increasingly in rapidly developing countries. Multiple lines of evidence point to a role for the microbial composition of the gastrointestinal tract in the etiology of IBD, but to date, attempts to define a specific microbial cause for IBD have proved unsuccessful. Microbial 16S rRNA profiling shows that IBD patients have elevated levels of Enterobacteriaceae, in particular Escherichia coli, and reduced levels of Faecalibacterium prausnitzii. The observed E. coli have been assigned to a specific pathovar, adherent-invasive E. coli (AIEC). Adherent-invasive E. coli are a genomically heterogenous group, and whereas many groups have attempted to identify specific genetic markers that differentiate AIEC from non-AIEC strains, very few concrete genetic associations have been uncovered. Here, we highlight the advantages of applying a phenotyping approach to the study of these organisms, rather than solely depending on a sequencing or genomic-based screening strategy because virulence-associated phenotypes exhibit behaviors of emergent systems. In this respect, attempts at genetic reductionism are prone to failure because there are numerous metabolic, regulatory or genetic paths that can underlie these virulence-associated behaviors. Here, we review these IBD-associated phenotypes in E. coli and make recommendations for experimental approaches to advance our understanding of IBD-associated bacteria more generally. With advances in high-throughput screening and nongenetically based metabolomic characterization of IBD-associated bacteria, we anticipate a fuller understanding of how altered microbial communities contribute to the development of IBD.


Assuntos
Infecções por Escherichia coli/complicações , Escherichia coli/patogenicidade , Doenças Inflamatórias Intestinais/etiologia , Infecções por Escherichia coli/microbiologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Fenótipo , Prognóstico
8.
PLoS Pathog ; 14(4): e1007032, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709025

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1005907.].

9.
J Bacteriol ; 200(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29440252

RESUMO

Yersinia pestis, the causative agent of plague, evolved from the closely related pathogen Yersinia pseudotuberculosis During its emergence, Y. pestis is believed to have acquired its unique pathogenic characteristics through numerous gene gains/losses, genomic rearrangements, and single nucleotide polymorphism (SNP) changes. One such SNP creates a single amino acid variation in the DNA binding domain of PhoP, the response regulator in the PhoP/PhoQ two-component system. Y. pseudotuberculosis and the basal human-avirulent strains of Y. pestis harbor glycines at position 215 of PhoP, whereas the modern human-virulent strains (e.g., KIM and CO92) harbor serines at this residue. Since PhoP plays multiple roles in the adaptation of Y. pestis to stressful host conditions, we tested whether this amino acid substitution affects PhoP activity or the ability of Y. pestis to survive in host environments. Compared to the parental KIM6+ strain carrying the modern allele of phoP (phoP-S215), a derivative carrying the basal allele (phoP-G215) exhibited slightly defective growth under a low-Mg2+ condition and decreased transcription of a PhoP target gene, ugd, as well as an ∼8-fold increase in the susceptibility to the antimicrobial peptide polymyxin B. The phoP-G215 strain showed no apparent defect in flea colonization, although a phoP-null mutant showed decreased flea infectivity in competition experiments. Our results suggest that the amino acid variation at position 215 of PhoP causes subtle changes in the PhoP activity and raise the possibility that the change in this residue have contributed to the evolution of increased virulence in Y. pestisIMPORTANCEY. pestis acquired a single nucleotide polymorphism (SNP) in phoP when the highly human-virulent strains diverged from less virulent basal strains, resulting in an amino acid substitution in the DNA binding domain of the PhoP response regulator. We show that Y. pestis carrying the modern phoP allele has an increased ability to induce the PhoP-regulated ugd gene and resist antimicrobial peptides compared to an isogenic strain carrying the basal allele. Given the important roles PhoP plays in host adaptation, the results raise an intriguing possibility that this amino acid substitution contributed to the evolution of increased virulence in Y. pestis Additionally, we present the first evidence that phoP confers a survival fitness advantage to Y. pestis inside the flea midgut.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Polimixina B/farmacologia , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/genética , Animais , Evolução Molecular , Glicina/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Serina/metabolismo , Sifonápteros/microbiologia , Transcrição Gênica , Virulência , Yersinia pestis/patogenicidade
10.
PLoS Pathog ; 12(10): e1005907, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27711220

RESUMO

Crohn's disease (CD) is a chronic inflammatory condition of diverse etiology. Exposure to foodborne pathogens causing acute gastroenteritis produces a long-term risk of CD well into the post-infectious period but the mechanistic basis for this ongoing relationship to disease onset is unknown. We developed two novel models to study the comorbidity of acute gastroenteritis caused by Salmonella Typhimurium or Citrobacter rodentium in mice colonized with adherent-invasive Escherichia coli (AIEC), a bacterial pathobiont linked to CD. Here, we show that disease activity in the post-infectious period after gastroenteritis is driven by the tissue-associated expansion of the resident AIEC pathobiont, with an attendant increase in immunopathology, barrier defects, and delays in mucosal restitution following pathogen clearance. These features required AIEC resistance to host defense peptides and a fulminant inflammatory response to the enteric pathogen. Our results suggest that individuals colonized by AIEC at the time of acute infectious gastroenteritis may be at greater risk for CD onset. Importantly, our data identify AIEC as a tractable disease modifier, a finding that could be exploited in the development of therapeutic interventions following infectious gastroenteritis in at-risk individuals.


Assuntos
Coinfecção/complicações , Doença de Crohn/microbiologia , Gastroenterite/complicações , Animais , Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/complicações , Escherichia coli , Infecções por Escherichia coli/complicações , Feminino , Imuno-Histoquímica , Inflamação/complicações , Inflamação/microbiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Salmonelose Animal/complicações , Salmonella typhimurium
11.
Infect Immun ; 84(4): 1062-1072, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810037

RESUMO

Pathogenic Yersinia species utilize a type III secretion system to translocate Yop effectors into infected host cells. Yop effectors inhibit innate immune responses in infected macrophages to promote Yersinia pathogenesis. In turn,Yersinia-infected macrophages respond to translocation of Yops by activating caspase-1, but different mechanisms of caspase-1 activation occur, depending on the bacterial genotype and the state of phagocyte activation. In macrophages activated with lipopolysaccharide (LPS) prior to Yersinia pseudotuberculosis infection, caspase-1 is activated by a rapid inflammasome-dependent mechanism that is inhibited by translocated YopM. The possibility that other effectors cooperate with YopM to inhibit caspase-1 activation in LPS-activated macrophages has not been investigated. Toward this aim, epistasis analysis was carried out in which the phenotype of aY. pseudotuberculosis yopM mutant was compared to that of a yopJ yopM, yopE yopM, yopH yopM, yopT yopM, or ypkA yopM mutant. Activation of caspase-1 was measured by cleavage of the enzyme, release of interleukin-1ß (IL-1ß), and pyroptosis in LPS-activated macrophages infected with wild-type or mutant Y. pseudotuberculosis strains. Results show enhanced activation of caspase-1 after infection with the yopJ yopM mutant relative to infection by any other single or double mutant. Similar results were obtained with the yopJ, yopM, and yopJ yopM mutants ofY ersinia pestis Following intravenous infection of mice, theY. pseudotuberculosis yopJ mutant was as virulent as the wild type, while the yopJ yopM mutant was significantly more attenuated than the yopM mutant. In summary, through epistasis analysis this work uncovered an important role for YopJ in inhibiting caspase-1 in activated macrophages and in promoting Yersinia virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Caspase 1/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Caspase 1/genética , Células Cultivadas , Epistasia Genética , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Imunidade Inata , Lipopolissacarídeos/toxicidade , Macrófagos/microbiologia , Camundongos , Mutação , Piroptose , Virulência
12.
Clin Sci (Lond) ; 129(12): 1083-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464517

RESUMO

The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.


Assuntos
Bactérias/imunologia , Diabetes Mellitus Tipo 2/imunologia , Metabolismo Energético , Imunidade nas Mucosas , Inflamação/imunologia , Intestinos/imunologia , Microbiota/imunologia , Obesidade/imunologia , Animais , Bactérias/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/microbiologia , Humanos , Inflamação/sangue , Inflamação/microbiologia , Mediadores da Inflamação/sangue , Insulina/sangue , Intestinos/microbiologia , Obesidade/sangue , Obesidade/microbiologia , Transdução de Sinais
13.
EMBO Mol Med ; 7(3): 259-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25666722

RESUMO

Pattern recognition receptors link metabolite and bacteria-derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity-promoting high-fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2(-/-) mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a HFD. This effect is independent of altered adiposity or NOD2 in hematopoietic-derived immune cells. Instead, increased metabolic inflammation and insulin resistance in NOD2(-/-) mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact PGN-NOD2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in HFD-fed NOD2(-/-) mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to WT, germ-free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes.


Assuntos
Bactérias/imunologia , Dieta/métodos , Disbiose , Inflamação/patologia , Resistência à Insulina , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Animais , Parede Celular/química , Camundongos , Camundongos Knockout , Peptidoglicano/análise
14.
Mol Microbiol ; 95(4): 678-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25442048

RESUMO

The two-component regulatory system SsrA-SsrB in Salmonella enterica controls expression of a virulence gene program required for intracellular survival in host cells. SsrA signaling is induced within the acidic host vacuole in which the bacteria reside; however, the mechanism by which SsrA senses this intracellular environment is unknown. Here, we show that the periplasmic sensor domain of SsrA is enriched in histidine residues that increase SsrA signaling below external pH of 6. While no single histidine accounted for the full acid-responsiveness of SsrA, we localized the acid-responsiveness principally to five histidines in the C-terminal end of the periplasmic sensor domain, with input from additional histidines in the N-terminal end of the senor. A sensor mutant lacking critical pH-responsive histidines was defective for acid-promoted activity, yet retained basal activity similar to wild type at neutral pH, indicating that the role of these histidines is to enhance signaling in response to acidification. In support of this, a pH-blind mutant was insensitive to the vacuole acidification blocking activity of bafilomycin, and was attenuated for competitive fitness during infection of mice. Our data demonstrate that SsrA contains a histidine-rich periplasmic sensor that enhances signaling in response to the innate host defense of vacuolar acidification.


Assuntos
Regulação Bacteriana da Expressão Gênica , Histidina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Salmonella typhimurium/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Aptidão Genética , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Periplasma , Estrutura Terciária de Proteína , Salmonelose Animal/microbiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais , Vacúolos/metabolismo , Virulência
15.
Infect Immun ; 82(8): 3383-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866805

RESUMO

Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and ß-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Doença de Crohn/microbiologia , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/imunologia , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Ilhas Genômicas , Humanos , Camundongos , Peptídeo Hidrolases/genética , Plasmídeos , Fatores de Virulência/genética
16.
Nat Commun ; 4: 1957, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23748852

RESUMO

Crohn's disease is a chronic inflammatory condition of the gastrointestinal tract in which alterations to the bacterial community contribute to disease. Adherent-invasive Escherichia coli are associated with human Crohn's disease; however, their role in intestinal immunopathology is unclear because of the lack of an animal model compatible with chronic timescales. Here we establish chronic adherent-invasive Escherichia coli infection in streptomycin-treated conventional mice (CD1, DBA/2, C3H, 129e and C57BL/6), enabling the study of host response and immunopathology. Adherent-invasive Escherichia coli induces an active T-helper 17 response, heightened levels of proinflammatory cytokines and fibrotic growth factors, with transmural inflammation and fibrosis. Depletion of CD8+ T cells increases caecal bacterial load, pathology and intestinal fibrosis in C57BL/6 mice, suggesting a protective role. Our findings provide evidence that chronic adherent-invasive Escherichia coli infections result in immunopathology similar to that seen in Crohn's disease. With this model, research into the host and bacterial genetics associated with adherent-invasive Escherichia coli-induced disease becomes more widely accessible.


Assuntos
Aderência Bacteriana , Doença de Crohn/microbiologia , Infecções por Escherichia coli/patologia , Escherichia coli/fisiologia , Inflamação/patologia , Intestinos/microbiologia , Intestinos/patologia , Animais , Carga Bacteriana , Linfócitos T CD8-Positivos/metabolismo , Ceco/microbiologia , Ceco/patologia , Contagem de Células , Doença Crônica , Colo/microbiologia , Colo/patologia , Doença de Crohn/complicações , Doença de Crohn/imunologia , Doença de Crohn/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Fibrose , Regulação da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/imunologia , Inflamação/microbiologia , Intestinos/imunologia , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem , Células Th1/imunologia , Células Th17/imunologia
17.
Cell Host Microbe ; 12(6): 791-8, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23245323

RESUMO

Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses.


Assuntos
Asparaginase/metabolismo , Evasão da Resposta Imune , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/metabolismo , Amônia/metabolismo , Animais , Asparaginase/genética , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Proliferação de Células , Citocinas/metabolismo , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/imunologia , Virulência , Fatores de Virulência/genética
18.
Infect Immun ; 80(7): 2519-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547545

RESUMO

Pathogenic Yersinia species modulate host immune responses through the activity of a plasmid-encoded type III secretion system and its associated effector proteins. One effector, YopM, is a leucine-rich-repeat-containing protein that is important for virulence in murine models of Yersinia infection. Although the mechanism by which YopM promotes virulence is unknown, we previously demonstrated that YopM was required for the induction of high levels of the immunosuppressive cytokine interleukin-10 (IL-10) in sera of C57BL/6J mice infected with Yersinia pseudotuberculosis. To determine if IL-10 production is important for the virulence function of YopM, C57BL/6J or congenic IL-10⁻/⁻ mice were infected intravenously with wild-type or yopM mutant Y. pseudotuberculosis strains. Analysis of cytokine levels in serum and bacterial colonization in the spleen and liver showed that YopM is required for IL-10 induction in C57BL/6J mice infected with either the IP32953 or the 32777 strain of Y. pseudotuberculosis, demonstrating that the phenotype is conserved in the species. In single-strain infections, the ability of the 32777ΔyopM mutant to colonize the liver was significantly increased by the delivery of exogenous IL-10 to C57BL/6J mice. In mixed infections, the competitive advantage of a yopM⁺ 32777 strain over an isogenic yopM mutant to colonize spleen and liver, as observed for C57BL/6J mice, was significantly reduced in IL-10⁻/⁻ animals. Thus, by experimentally controlling IL-10 levels in a mouse infection model, we obtained evidence that the induction of this cytokine is an important mechanism by which YopM contributes to Y. pseudotuberculosis virulence.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Evasão da Resposta Imune , Interleucina-10/biossíntese , Fatores de Virulência/metabolismo , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/genética , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Interleucina-10/deficiência , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/microbiologia , Virulência , Yersinia pseudotuberculosis/genética
20.
Nature ; 478(7370): 506-10, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993626

RESUMO

Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.


Assuntos
Genoma Bacteriano/genética , Peste/microbiologia , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação , Cromossomos Bacterianos/genética , Mapeamento de Sequências Contíguas , Polpa Dentária/microbiologia , Evolução Molecular , História Medieval , Humanos , Londres/epidemiologia , Dados de Sequência Molecular , Filogenia , Peste/epidemiologia , Peste/transmissão , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Virulência/genética , Yersinia pestis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...