Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(3): 667-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696196

RESUMO

BACKGROUND: The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES: To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS: Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS: GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION: Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbß3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.


Assuntos
Fibrina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Eptifibatida/farmacologia , Fibrina/química , Glicoproteínas da Membrana de Plaquetas/metabolismo
2.
J Pathol ; 259(2): 220-232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385700

RESUMO

Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Recidiva Local de Neoplasia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais , Linhagem Celular Tumoral
3.
Blood Adv ; 6(13): 4015-4027, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561308

RESUMO

Fibrin polymerization involves thrombin-mediated exposure of knobs on one monomer that bind to holes available on another, leading to the formation of fibers. In silico evidence has suggested that the classical A:a knob-hole interaction is enhanced by surrounding residues not directly involved in the binding pocket of hole a, via noncovalent interactions with knob A. We assessed the importance of extended knob-hole interactions by performing biochemical, biophysical, and in silico modeling studies on recombinant human fibrinogen variants with mutations at residues responsible for the extended interactions. Three single fibrinogen variants, γD297N, γE323Q, and γK356Q, and a triple variant γDEK (γD297N/γE323Q/γK356Q) were produced in a CHO (Chinese Hamster Ovary) cell expression system. Longitudinal protofibril growth probed by atomic force microscopy was disrupted for γD297N and enhanced for the γK356Q mutation. Initial polymerization rates were reduced for all variants in turbidimetric studies. Laser scanning confocal microscopy showed that γDEK and γE323Q produced denser clots, whereas γD297N and γK356Q were similar to wild type. Scanning electron microscopy and light scattering studies showed that fiber thickness and protofibril packing of the fibers were reduced for all variants. Clot viscoelastic analysis showed that only γDEK was more readily deformable. In silico modeling suggested that most variants displayed only slip-bond dissociation kinetics compared with biphasic catch-slip kinetics characteristics of wild type. These data provide new evidence for the role of extended interactions in supporting the classical knob-hole bonds involving catch-slip behavior in fibrin formation, clot structure, and clot mechanics.


Assuntos
Fibrina , Trombose , Animais , Células CHO , Cricetinae , Cricetulus , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Trombina/metabolismo
4.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633287

RESUMO

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.


Assuntos
Coagulação Sanguínea/fisiologia , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibrinólise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Animais , Células CHO , Cricetulus , Fibrina/química , Humanos , Camundongos Knockout , Proteínas Recombinantes/química
5.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183396

RESUMO

The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.


Assuntos
Reagentes de Ligações Cruzadas/química , Fator XIIIa/metabolismo , Fibrinogênio/metabolismo , Embolia Pulmonar/etiologia , Embolia Pulmonar/patologia , Veia Cava Inferior/patologia , Trombose Venosa/complicações , Animais , Coagulação Sanguínea , Plaquetas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Imagem Óptica , Embolia Pulmonar/sangue , Trombose Venosa/sangue
6.
Arterioscler Thromb Vasc Biol ; 41(3): 1092-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472402

RESUMO

OBJECTIVE: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. CONCLUSIONS: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Fibrinogênio/metabolismo , Fragmentos de Peptídeos/sangue , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinogênio/química , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Agregação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Transdução de Sinais , Ressonância de Plasmônio de Superfície
8.
Nanomedicine (Lond) ; 13(19): 2491-2505, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30311540

RESUMO

AIM: γ' fibrinogen has been associated with thrombosis. Here the interactions between γ'γ' or γAγA fibrinogen and red blood cells (RBCs), and their role on fibrin clot properties were studied. MATERIALS & METHODS: Atomic Force microscopy (AFM)-based force spectroscopy, rheological, electron and confocal microscopy, and computational approaches were conducted for both fibrinogen variants. RESULTS & CONCLUSION: AFM shows that the recombinant human (rh)γ'γ' fibrinogen increases the binding force and the frequency of the binding to RBCs compared with rhγAγA, promoting cell aggregation. Structural changes in rhγ'γ' fibrin clots, displaying a nonuniform fibrin network were shown by microscopy approaches. The presence of RBCs decreases the fibrinolysis rate and increases viscosity of rhγ'γ' fibrin clots. The full length of the γ' chain structure, revealed by computational analysis, occupies a much wider surface and is more flexible, allowing an increase of the binding between γ' fibers, and eventually with RBCs.


Assuntos
Fibrina/metabolismo , Fibrinogênios Anormais/administração & dosagem , Tromboembolia/tratamento farmacológico , Trombose/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fibrina/ultraestrutura , Fibrinogênios Anormais/química , Fibrinogênios Anormais/genética , Fibrinólise/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Conformação Proteica , Reologia , Tromboembolia/patologia , Trombose/sangue , Trombose/patologia , Viscosidade
9.
J Clin Invest ; 128(8): 3356-3368, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723163

RESUMO

Hemostasis requires conversion of fibrinogen to fibrin fibers that generate a characteristic network, interact with blood cells, and initiate tissue repair. The fibrin network is porous and highly permeable, but the spatial arrangement of the external clot face is unknown. Here we show that fibrin transitioned to the blood-air interface through Langmuir film formation, producing a protective film confining clots in human and mouse models. We demonstrated that only fibrin is required for formation of the film, and that it occurred in vitro and in vivo. The fibrin film connected to the underlying clot network through tethering fibers. It was digested by plasmin, and formation of the film was prevented with surfactants. Functionally, the film retained blood cells and protected against penetration by bacterial pathogens in a murine model of dermal infection. Our data show a remarkable aspect of blood clotting in which fibrin forms a protective film covering the external surface of the clot, defending the organism against microbial invasion.


Assuntos
Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biofilmes , Coagulação Sanguínea , Fibrina/metabolismo , Dermatopatias Bacterianas/metabolismo , Animais , Bactérias/patogenicidade , Modelos Animais de Doenças , Humanos , Camundongos , Dermatopatias Bacterianas/microbiologia
10.
Nanomedicine ; 14(3): 909-918, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29410160

RESUMO

Plasma fibrinogen includes an alternatively spliced γ-chain variant (γ'), which mainly exists as a heterodimer (γAγ') and has been associated with thrombosis. We tested γAγ' fibrinogen-red blood cells (RBCs) interaction using atomic force microscopy-based force spectroscopy, magnetic tweezers, fibrin clot permeability, scanning electron microscopy and laser scanning confocal microscopy. Data reveal higher work necessary for RBC-RBC detachment in the presence of γAγ' rather than γAγA fibrinogen. γAγ' fibrinogen-RBCs interaction is followed by changes in fibrin network structure, which forms an heterogeneous clot structure with areas of denser and highly branched fibrin fibers. The presence of RBCs also increased the stiffness of γAγ' fibrin clots, which are less permeable and more resistant to lysis than γAγA clots. The modifications on clots promoted by RBCs-γAγ' fibrinogen interaction could alter the risk of thrombotic disorders.


Assuntos
Coagulação Sanguínea , Adesão Celular , Eritrócitos/metabolismo , Fibrina/metabolismo , Fibrina/ultraestrutura , Fibrinogênio/metabolismo , Fibrinogênios Anormais/metabolismo , Eritrócitos/ultraestrutura , Fibrinogênio/ultraestrutura , Fibrinogênios Anormais/ultraestrutura , Hemostáticos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
11.
Blood ; 127(4): 487-95, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26608329

RESUMO

Previous studies have shown effects of thrombin and fibrinogen γ' on clot structure. However, structural information was obtained using electron microscopy, which requires sample dehydration. Our aim was to investigate the role of thrombin and fibrinogen γ' in modulating fibrin structure under fully hydrated conditions. Fibrin fibers were studied using turbidimetry, atomic force microscopy, electron microscopy, and magnetic tweezers in purified and plasma solutions. Increased thrombin induced a pronounced decrease in average protofibril content per fiber, with a relatively minor decrease in fiber size, leading to the formation of less compact fiber structures. Atomic force microscopy under fully hydrated conditions confirmed that fiber diameter was only marginally decreased. Decreased protofibril content of the fibers produced by high thrombin resulted in weakened clot architecture as analyzed by magnetic tweezers in purified systems and by thromboelastometry in plasma and whole blood. Fibers produced with fibrinogen γ' showed reduced protofibril packing over a range of thrombin concentrations. High-magnification electron microscopy demonstrated reduced protofibril packing in γ' fibers and unraveling of fibers into separate protofibrils. Decreased protofibril packing was confirmed in plasma for high thrombin concentrations and fibrinogen-deficient plasma reconstituted with γ' fibrinogen. These findings demonstrate that, in fully hydrated conditions, thrombin and fibrinogen γ' have dramatic effects on protofibril content and that protein density within fibers correlates with strength of the fibrin network. We conclude that regulation of protofibril content of fibers is an important mechanism by which thrombin and fibrinogen γ' modulate fibrin clot structure and strength.


Assuntos
Coagulação Sanguínea , Fibrinogênios Anormais/metabolismo , Fibrinogênios Anormais/ultraestrutura , Trombina/metabolismo , Trombina/ultraestrutura , Viscosidade Sanguínea , Humanos , Microscopia de Força Atômica , Nefelometria e Turbidimetria , Trombose/metabolismo
13.
Pediatr Pulmonol ; 45(6): 566-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503281

RESUMO

Pseudomonas aeruginosa (PsA) is the most common pathogen to cause chronic lung infection in children with cystic fibrosis (CF), and is associated with an increase in both morbidity and mortality. Whilst the non-mucoid strain can be eradicated, it is believed that mucoid PsA is difficult, if not impossible, to eradicate. We hypothesized that with modern and aggressive antibiotic regimes, mucoid PsA can be eradicated in children with CF. We investigated this hypothesis through a retrospective review of respiratory tract cultures of children with CF at The Royal Brompton Hospital, London. Children aged under 16 with a confirmed diagnosis of CF and mucoid PsA on respiratory tract culture during a defined 9-year period were eligible for inclusion. Respiratory tract culture results were followed up for each patient to establish whether children remained infected with mucoid PsA and specifically to identify clearance of infection. Factors which may have been associated with persistence or clearance were also sought. One hundred sixteen children had the minimum dataset, and of these patients 67 (58%) cleared mucoid PsA for more than 1 year. Of the 67 patients who cleared mucoid PsA for more than 1 year, 38 (57%) patients remained clear of mucoid PsA at the last available culture (median 30, range 2-106 clear cultures, and median 55, 12-103 months clear). We conclude that isolation of mucoid PsA does not necessarily equate to lifelong infection. We suggest that trials of eradication of mucoid PsA at first isolation are required.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Adolescente , Antibacterianos/administração & dosagem , Criança , Colistina/administração & dosagem , Feminino , Gentamicinas/administração & dosagem , Humanos , Estudos Longitudinais , Masculino , Nebulizadores e Vaporizadores , Infecções por Pseudomonas/etiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...