Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Atmos ; 1(4): 176-191, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34278306

RESUMO

A small fraction of aerosol particles known as Ice-Nucleating Particles (INPs) have the potential to trigger ice formation in cloud droplets at higher temperatures than homogeneous freezing. INPs can strongly reduce the water content and albedo of shallow mixed-phase clouds and also influence the development of convective clouds. Therefore, it is important to understand which aerosol types serve as INPs and how effectively they nucleate ice. Using a combination of INP measurements and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), we quantify both the INP concentrations over a range of activation temperatures and the size-resolved composition. We show that the INP population of aerosol samples collected from an aircraft over the UK during July of 2017 is consistent with ice-nucleation on mineral dust below about -20 °C, but some other INP type must account for ice-nucleation at higher temperatures. Biological aerosol particles above ∼2 µm were detected based on visual detection of their morphological features in all the analysed samples at concentrations of at least 10 to 100 L-1 in the boundary layer. We suggest that given the presence of biological material, it could substantially contribute to the enhanced ice-nucleation ability of the samples at above -20 °C. Organic material attached to mineral dust could be responsible for at least part of this enhancement. These results are consistent with a growing body of data which suggests mineral dust alone cannot explain the INP population in the mid-latitude terrestrial atmosphere and that biological ice nucleating particles are most likely important for cloud glaciation.

2.
Sci Adv ; 6(26): eaba8137, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637618

RESUMO

Ice-nucleating particles (INPs) have the potential to remove much of the liquid water in climatically important mid- to high-latitude shallow supercooled clouds, markedly reducing their albedo. The INP sources at these latitudes are very poorly defined, but it is known that there are substantial dust sources across the high latitudes, such as Iceland. Here, we show that Icelandic dust emissions are sporadically an important source of INPs at mid to high latitudes by combining ice-nucleating active site density measurements of aircraft-collected Icelandic dust samples with a global aerosol model. Because Iceland is only one of many high-latitude dust sources, we anticipate that the combined effect of all these sources may strongly contribute to the INP population in the mid- and high-latitude northern hemisphere. This is important because these emissions are directly relevant for the cloud-phase climate feedback and because high-latitude dust emissions are expected to increase in a warmer climate.

3.
Sci Rep ; 8(1): 13821, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217983

RESUMO

A minute fraction of atmospheric particles exert a disproportionate effect on the phase of mixed-phase clouds by acting as ice-nucleating particles (INPs). To understand the effects of these particles on weather and climate, both now and into the future, we must first develop a quantitative understanding of the major INP sources worldwide. Previous work has demonstrated that aerosols such as desert dusts are globally important INPs, but the role of biogenic INPs is unclear, with conflicting evidence for their importance. Here, we show that at a temperate site all INPs active above -18 °C at concentrations >0.1 L-1 are destroyed on heating, consistent with these INPs being of biological origin. Furthermore, we show that a global model of desert dust INPs dramatically underestimates the measured INP concentrations, but is consistent with the thermally-stable component. Notably, the heat sensitive INPs are active at temperatures where shallow cloud layers in Northern Europe are frequently observed to glaciate. Hence, we suggest that biogenic material is important for primary ice production in this region. The prevalence of heat sensitive, most likely biogenic, INPs in this region highlights that, as a community, we need to quantify the sources and transport of these particles as well as determine their atmospheric abundance across the globe and at cloud altitudes.

4.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3177-95, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22006961

RESUMO

We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.


Assuntos
Agricultura , Atmosfera/química , Árvores/química , Aerossóis/química , Poluentes Atmosféricos/química , Aeronaves , Derivados de Alilbenzenos , Anisóis/química , Arecaceae/química , Arecaceae/fisiologia , Atmosfera/análise , Bornéu , Butadienos/química , Carbono/química , Hemiterpenos/química , Radical Hidroxila/química , Indústrias , Malásia , Monoterpenos/química , Óxidos de Nitrogênio/química , Ozônio/química , Pentanos/química , Fotoquímica , Árvores/fisiologia , Compostos Orgânicos Voláteis/química
5.
J Environ Monit ; 6(3): 234-41, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14999322

RESUMO

Near real-time measurements of light non-methane hydrocarbons (NMHCs) and peroxyacetyl nitrate (PAN) have been performed in the free troposphere using two fast gas chromatography (GC) instruments designed for use on aircraft. A GC-helium ionisation detector (HID) system measured 15 C(2)-C(5) hydrocarbons with 5 min time resolution and a dual channel GC-Electron Capture Detector (ECD) measured PAN with 90 s resolution. Both instruments had low parts per trillion by volume (pptV) detection limits and ran continuously at the remote Jungfraujoch (JFJ) research station in the Swiss Alps (46.55[degree]N, 7.98[degree]E), 3580 m above mean sea level (AMSL), during February/March 2003. Carbon monoxide, ozone, nitrogen oxide and nitrogen dioxide and all odd nitrogen species (NO(y)) were also measured continuously. Hydrocarbons and CO were strongly correlated in all air-masses whilst PAN exhibited both positive and negative correlations with respect to O(3), dependent on age and origin of the air-mass sampled. PAN was found to contribute [similar]20% to the NO(y) sampled on average. The experiment, as well as providing interesting datasets from this remote location, also demonstrated that when optimised, GC techniques have the potential to measure at a time resolution significantly greater than is traditionally considered, with high sensitivity and low uncertainty.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia Gasosa/instrumentação , Monitoramento Ambiental/instrumentação , Hidrocarbonetos/análise , Ácido Peracético/análogos & derivados , Ácido Peracético/análise , Automação , Desenho de Equipamento , Sensibilidade e Especificidade
6.
Environ Monit Assess ; 74(3): 209-15, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11944794

RESUMO

The evolution of NOx from grass and maize silages was measured using chemiluminescence in samples kept in airtight containers, in the silos and in a 750 kg mass removed to a mixer waggon. Measurements were made on the grass and maize silos in two consecutive years. The results show that there is continuous evolution of NOx after silos have been opened and that high concentrations persist in the mass which are rapidly released on agitation at the feed-out. The maximum recorded concentrations of NO and NO2 were 1985 and 152 ppbv respectively. These values are orders of magnitude greater than for rural background levels and exceed the maximum hourly exposure of 50 ppbv for NO2 recommended by the UK expert panel for quality standards.


Assuntos
Ração Animal , Óxidos de Nitrogênio/análise , Agricultura , Animais , Bovinos , Monitoramento Ambiental , Poaceae , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...