Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 94: 34-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746321

RESUMO

Autosomal dominant osteopetrosis type II (ADO2) is a heritable osteosclerotic bone disorder due to dysfunctional osteoclast activity. ADO2 is caused by missense mutations in the chloride channel 7 (CLCN7) gene characterized by osteosclerosis with multiple fractures. ADO2 can result in osteomyelitis, visual loss and bone marrow failure. Currently, there is no cure for ADO2, and until recently no appropriate animal model of ADO2 existed to understand better the pathogenesis of this disease and to test new therapies. Therefore, we created ADO2 knock-in mouse model with a G213R (human homolog of G215R) missense mutation in the Clcn7 gene on 129S1 background, and demonstrated that this mouse model phenocopies human ADO2. As ADO2 gives rise to incomplete penetrance (66%) in human and marked phenotypic variability is observed among patients with the same mutation, we hypothesized that the severity and penetrance of ADO2 will also vary in mouse models on different genetic backgrounds. To test this, we created ADO2 mouse models in DBA/D2, C57BL/6J/B6 and Balb/c strains, and compared bone phenotypes and performed serum biochemical analysis between strain- and age-matched wild-type (WT) and ADO2 mice. At 3months of age, whole body aBMD was higher (4-7% in male; 1-5% in female) in the ADO2 mice compared to their wild-type littermates. In addition, ADO2 male mice on 129 background displayed highest percent increase of BV/TV (106%), followed by D2 (92%), B6 (46%), and Balb/c (33%) compared to strain-matched wild-type mice. We observed similar differences for BV/TV between ADO2 and wild-type mice on different genetic backgrounds in female: 129 (96%)>D2 (73%)>Balb/c (39%) and B6 (36%). Serum calcium, phosphorus, alkaline phosphatase and P1NP levels were similar in the WT and ADO2 mice on all genetic backgrounds but TRAP was higher (76% to 220% in male; 33-95% in female) and CTX/TRAP ratio was lower (39-65% in male and 3-41% in female) in the ADO2 mice compared to their strain-matched wild-type littermates. We also found that young (3months) ADO2 mice on 129S1 background exhibited 200% higher trabecular BV/TV whereas old (18months) ADO2 mice displayed 400-700% higher BV/TV compared to their age-matched wild-type controls. In summary, phenotypic severity in ADO2 mice varied markedly on different genetic backgrounds (129>D2>Balb/c>B6) and became more pronounced with age, which resembles the wide variations in phenotype observed in ADO2 patients. These mouse models will help us to identify genes/factors that influence severity and penetrance of ADO2, and test innovative therapies to treat this disease.


Assuntos
Osteopetrose/genética , Osteopetrose/patologia , Animais , Biomarcadores/sangue , Peso Corporal , Densidade Óssea , Reabsorção Óssea/sangue , Reabsorção Óssea/complicações , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Humanos , Masculino , Camundongos , Osteopetrose/sangue , Osteopetrose/complicações , Fenótipo , Microtomografia por Raio-X
2.
Calcif Tissue Int ; 100(4): 361-373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28013361

RESUMO

Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.


Assuntos
Densidade Óssea/fisiologia , Osteócitos/metabolismo , Proteínas Wnt/metabolismo , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Feminino , Fêmur/metabolismo , Fêmur/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Proteínas Wnt/genética
3.
Endocrinology ; 158(3): 470-476, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28005411

RESUMO

Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression.


Assuntos
Líquido Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/metabolismo , Animais , Densidade Óssea , Raquitismo Hipofosfatêmico Familiar/sangue , Feminino , Fêmur/crescimento & desenvolvimento , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , Camundongos Knockout , Mutação
4.
Bone ; 86: 98-105, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26965530

RESUMO

Fibroblast growth factor 23 (FGF23) circulates as active protein and inactive fragments. Low iron status increases FGF23 gene expression, and iron deficiency is common. We hypothesized that in healthy premenopausal women, serum iron influences C-terminal and intact FGF23 concentrations, and that iron and FGF23 associate with bone mineral density (BMD). Serum iron, iron binding capacity, percent iron saturation, phosphorus, and other biochemistries were measured in stored fasting samples from healthy premenopausal white (n=1898) and black women (n=994), age 20-55years. Serum C-terminal and intact FGF23 were measured in a subset (1631 white and 296 black women). BMD was measured at the lumbar spine and femur neck. Serum phosphorus, calcium, alkaline phosphatase and creatinine were lower in white women than black women (p<0.001). Serum iron (p<0.0001) and intact FGF23 (p<0.01) were higher in white women. C-terminal FGF23 did not differ between races. Phosphorus correlated with intact FGF23 (white women, r=0.120, p<0.0001; black women r=0.163, p<0.01). However, phosphorus correlated with C-terminal FGF23 only in black women (r=0.157, p<0.01). Intact FGF23 did not correlate with iron. C-terminal FGF23 correlated inversely with iron (white women r=-0.134, p<0.0001; black women r=-0.188, p<0.01), having a steeper slope at iron <50mcg/dl than ≥50mcg/dl. Longitudinal changes in iron predicted changes in C-terminal FGF23. Spine BMD correlated with iron negatively (r=-0.076, p<0.01) in white women; femur neck BMD correlated with iron negatively (r=-0.119, p<0.0001) in black women. Both relationships were eliminated in weight-adjusted models. BMD did not correlate with FGF23. Serum iron did not relate to intact FGF23, but was inversely related to C-terminal FGF23. Intact FGF23 correlated with serum phosphorus. In weight-adjusted models, BMD was not related to intact FGF23, C-terminal FGF23 or iron. The influence of iron on FGF23 gene expression is not important in determining bone density in healthy premenopausal women.


Assuntos
Densidade Óssea , Fatores de Crescimento de Fibroblastos/sangue , Ferro/sangue , Pré-Menopausa/sangue , Adulto , Estudos de Coortes , Feminino , Colo do Fêmur/fisiologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Estudos Longitudinais , Vértebras Lombares/fisiologia , Análise Multivariada , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...