Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383472

RESUMO

Magnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMn6Sn6 using inelastic neutron scattering. We observe sharp, collective acoustic magnons and identify flat-band magnons that are localized to a hexagonal plaquette due to the special geometry of the kagome layer. Surprisingly, we observe another type of elementary magnetic excitation; a chiral magnetic quasiparticle that is also localized on a hexagonal plaquette. The short lifetime of localized flat-band and chiral quasiparticles suggest that they are hybrid excitations that decay into electronic states.

2.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

3.
Nat Commun ; 12(1): 999, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579928

RESUMO

Knowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: [Formula: see text]. Surfaces protected by [Formula: see text] are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of µ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.

4.
Phys Rev Lett ; 124(16): 167204, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383954

RESUMO

The antiferromagnetic (AFM) compound MnBi_{2}Te_{4} is suggested to be the first realization of an AFM topological insulator. We report on inelastic neutron scattering studies of the magnetic interactions in MnBi_{2}Te_{4} that possess ferromagnetic triangular layers with AFM interlayer coupling. The spin waves display a large spin gap and pairwise exchange interactions within the triangular layer are long ranged and frustrated by large next-nearest neighbor AFM exchange. The degree of frustration suggests proximity to a variety of magnetic phases, potentially including skyrmion phases, which could be accessed in chemically tuned compounds or upon the application of symmetry-breaking fields.

5.
Nat Commun ; 9(1): 2796, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022110

RESUMO

The interplay between superconductivity and charge-density wave (CDW) in 2H-NbSe2 is not fully understood despite decades of study. Artificially introduced disorder can tip the delicate balance between two competing long-range orders, and reveal the underlying interactions that give rise to them. Here we introduce disorder by electron irradiation and measure in-plane resistivity, Hall resistivity, X-ray scattering, and London penetration depth. With increasing disorder, the superconducting transition temperature, Tc, varies non-monotonically, whereas the CDW transition temperature, TCDW, monotonically decreases and becomes unresolvable above a critical irradiation dose where Tc drops sharply. Our results imply that the CDW order initially competes with superconductivity, but eventually assists it. We argue that at the transition where the long-range CDW order disappears, the cooperation with superconductivity is dramatically suppressed. X-ray scattering and Hall resistivity measurements reveal that the short-range CDW survives above the transition. Superconductivity persists to much higher dose levels, consistent with fully gapped superconductivity and moderate interband pairing.

6.
Phys Rev Lett ; 119(14): 147201, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053286

RESUMO

Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.

7.
Phys Rev Lett ; 111(22): 227002, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24329466

RESUMO

The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

8.
Phys Rev Lett ; 111(15): 157001, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160618

RESUMO

Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q(AFM)=(1/2,1/2,1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q(AFM). SrCo2As2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

9.
Phys Rev Lett ; 111(4): 047001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931395

RESUMO

Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature TC≈100 K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Néel temperature TN=480 K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements.

10.
Phys Rev Lett ; 110(17): 177002, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679760

RESUMO

Inelastic neutron scattering measurements on Ba(Fe0.963Ni0.037)2As2 manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at the antiferromagnetic (AFM) wave vector Q(AFM) along the orthorhombic a axis, the resonance disperses upwards away from Q(AFM) along the b axis. In contrast to the downward dispersing resonance and hourglass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe2As2 compounds possesses a magnonlike upwards dispersion.

11.
Phys Rev Lett ; 109(16): 167003, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215117

RESUMO

The spin fluctuation spectra from nonsuperconducting Cu-substituted, and superconducting Co-substituted, BaFe(2)As(2) are compared quantitatively by inelastic neutron scattering measurements and are found to be indistinguishable. Whereas diffraction studies show the appearance of incommensurate spin-density wave order in Co and Ni substituted samples, the magnetic phase diagram for Cu substitution does not display incommensurate order, demonstrating that simple electron counting based on rigid-band concepts is invalid. These results, supported by theoretical calculations, suggest that substitutional impurity effects in the Fe plane play a significant role in controlling magnetism and the appearance of superconductivity, with Cu distinguished by enhanced impurity scattering and split-band behavior.

12.
Phys Rev Lett ; 108(8): 087005, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463561

RESUMO

The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment µ=3.9µ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large µ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.

13.
Phys Rev Lett ; 106(25): 257001, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770663

RESUMO

Neutron diffraction studies of Ba(Fe(1-x)Co(x))(2)As)(2) reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, ± ε, 0) from the commensurate antiferromagnetic propagation vector Q(AFM) = (1,0,1) (in orthorhombic notation) where ε ≈ 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.

14.
Phys Rev Lett ; 104(5): 057006, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366790

RESUMO

High-resolution x-ray diffraction measurements reveal an unusually strong response of the lattice to superconductivity in Ba(Fe1-xCox)2As2. The orthorhombic distortion of the lattice is suppressed and, for Co doping near x=0.063, the orthorhombic structure evolves smoothly back to a tetragonal structure. We propose that the coupling between orthorhombicity and superconductivity is indirect and arises due to the magnetoelastic coupling, in the form of emergent nematic order, and the strong competition between magnetism and superconductivity.

15.
Phys Rev Lett ; 103(8): 087001, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792748

RESUMO

Neutron and x-ray diffraction studies show that the simultaneous first-order transition to an orthorhombic and antiferromagnetic (AFM) ordered state in BaFe2As2 splits into two transitions with Co doping. For Ba(Fe0.953Co0.047)2As2, a tetragonal-orthorhombic transition occurs at TS=60 K, followed by a second-order transition to AFM order at TN=47 K. Superconductivity occurs in the orthorhombic state below TC=17 K and coexists with AFM. Below TC, the static Fe moment is reduced along with a redistribution of low energy magnetic excitations indicating competition between coexisting superconductivity and AFM order.

16.
Phys Rev Lett ; 102(18): 187206, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19518910

RESUMO

Neutron scattering measurements of the magnetic excitations in single crystals of antiferromagnetic CaFe2As2 reveal steeply dispersive and well-defined spin waves up to an energy of approximately 100 meV. Magnetic excitations above 100 meV and up to the maximum energy of 200 meV are however broader in energy and momentum than the experimental resolution. While the low energy modes can be fit to a Heisenberg model, the total spectrum cannot be described as arising from excitations of a local moment system. Ab initio calculations of the dynamic magnetic susceptibility suggest that the high energy behavior is dominated by the damping of spin waves by particle-hole excitations.

17.
Phys Rev Lett ; 101(22): 227205, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19113520

RESUMO

Inelastic neutron scattering measurements of the magnetic excitations in CaFe2As2 indicate that the spin wave velocity in the Fe layers is exceptionally large and similar in magnitude to the cuprates. However, the spin wave velocity perpendicular to the layers is at least half as large that in the layer, so that the magnetism is more appropriately categorized as anisotropic three-dimensional, in contrast to the two-dimensional cuprates. Exchange constants derived from band structure calculations predict spin wave velocities that are consistent with the experimental data.

18.
Phys Rev Lett ; 101(15): 157004, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999629

RESUMO

We have studied the phonon density of states (PDOS) in LaFeAsO(1-x)Fx with inelastic neutron scattering methods. The PDOS of the parent compound (x=0) is very similar to the PDOS of samples optimally doped with fluorine to achieve the maximum Tc (x approximately 0.1). Good agreement is found between the experimental PDOS and first-principles calculations with the exception of a small difference in Fe mode frequencies. The PDOS reported here is not consistent with conventional electron-phonon mediated superconductivity.

19.
Phys Rev Lett ; 100(21): 217201, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18518629

RESUMO

Using x-ray resonant magnetic scattering and x-ray magnetic circular dichroism, techniques that are element specific, we have elucidated the role of Ho3+ in multiferroic HoMnO3. In zero field, Ho3+ orders antiferromagnetically with moments aligned along the hexagonal c direction below 40 K, and undergoes a transition to another magnetic structure below 4.5 K. In applied electric fields of up to 1 x 10(7) V/m, the magnetic structure of Ho3+ remains unchanged.

20.
Phys Rev Lett ; 99(3): 037202, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678321

RESUMO

Inelastic neutron scattering experiments show that spin dynamics in the charge-ordered insulating ground state of the double layer perovskite YBaFe(2)O(5) is well described in terms of e(g) superexchange interactions. Above the Verwey transition at T(V)=308 K, t(2g) double exchange-type conduction proceeds within antiferromagnetic FeO(2)-BaO-FeO(2) double layers by an electron hopping process that requires a spin flip of the five-coordinated Fe ions, costing an energy of 5S(2) approximately 0.1 eV. The hopping process disrupts near-neighbor spin correlations, leading to massive damping of zone-boundary spin waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...