Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563056

RESUMO

Sphingosine 1-phosphate (S1P) signaling regulates numerous biological processes including neurogenesis, inflammation and neovascularization. However, little is known about the role of S1P signaling in the eye. In this study, we characterize two sphingosine kinases (SPHK1 and SPHK2), which phosphorylate sphingosine to S1P, and three S1P receptors (S1PR1, S1PR2 and S1PR3) in mouse and rat eyes. We evaluated sphingosine kinase and S1P receptor gene expression at the mRNA level in various rat tissues and rat retinas exposed to light-damage, whole mouse eyes, specific eye structures, and in developing retinas. Furthermore, we determined the localization of sphingosine kinases and S1P receptors in whole rat eyes by immunohistochemistry. Our results unveiled unique expression profiles for both sphingosine kinases and each receptor in ocular tissues. Furthermore, these kinases and S1P receptors are expressed in mammalian retinal cells and the expression of SPHK1, S1PR2 and S1PR3 increased immediately after light damage, which suggests a function in apoptosis and/or light stress responses in the eye. These findings have numerous implications for understanding the role of S1P signaling in the mechanisms of ocular diseases such as retinal inflammatory and degenerative diseases, neovascular eye diseases, glaucoma and corneal diseases.


Assuntos
Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Receptores de Lisoesfingolipídeo/biossíntese , Retina/metabolismo , Animais , Bovinos , Imuno-Histoquímica , Lisofosfolipídeos/metabolismo , Camundongos , Ratos , Ratos Sprague-Dawley , Retina/citologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
2.
Invest Ophthalmol Vis Sci ; 55(4): 2705-13, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24644051

RESUMO

PURPOSE: Mutations in the elongation of very long chain fatty acids 4 (ELOVL4) gene cause human Stargardt's macular dystrophy 3 (STGD3), a juvenile onset dominant form of macular degeneration. To understand the role of the ELOVL4 protein in retinal function, several mouse models have been developed by using transgenic (TG), knock-in (Elovl4(+/mut)), and knockout (Elovl4(+/-)) approaches. Here we analyzed quantitatively the ELOVL4 protein and its enzymatic products (very long chain saturated fatty acid [VLC-FA] and VLC-polyunsaturated fatty acid [VLC-PUFA]) in the retinas of 8 to 10-week-old TG1(+), TG2(+), and Elovl4(+/mut) mice that harbor the mutant ELOVL4 and compared them to their wild-type littermates and Elovl4(+/-) that do not express the mutant protein. We also analyzed skin from these mice to gain insight into the pathogenesis resulting from the ELOVL4 mutation. METHODS: ELOVL4 protein localization in the retina was determined by immunohistochemistry. Levels of wild-type ELOVL4 protein in skin and retinas were determined by Western blotting. Total lipids from skin and retinas were measured by gas chromatography-mass spectrometry (GC-MS). Retinal glycerophosphatidylcholines (PC) were analyzed by tandem mass spectrometry. RESULTS: Immunohistochemical and Western analysis indicated that wild-type ELOVL4 protein was reduced in heterozygous Elovl4(+/mut) and Elovl4(+/-) retinas, but not in TG2(+) retinas. We found that VLC-FA was reduced by 50% in the skin of Elovl4(+/-) and by 60% to 65% in Elovl4(+/mut). We found VLC-PUFA levels at ∼ 50% in both the retinas, and wild-type levels of VLC-PUFA in TG2(+) retinas. CONCLUSIONS: We conclude that the presence of the mutant ELOVL4 does not affect the function of wild-type ELOVL4 in the fully developed 8- to 10-week-old retinas.


Assuntos
DNA/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Western Blotting , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Genótipo , Humanos , Imuno-Histoquímica , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Espectrometria de Massas em Tandem
3.
Am J Pathol ; 166(5): 1343-51, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15855636

RESUMO

Myofibroblasts are specialized contractile fibroblasts that are critical in wound closure and tissue contracture. Generation of contractile force is correlated with the expression of alpha-smooth muscle actin (alpha-SMA); however, little is known regarding molecular mechanisms that control activation of alpha-SMA in myofibroblasts in granulation tissue. The aims of the present studies were to identify sufficient promoter regions required for alpha-SMA expression in myofibroblasts in vivo and to determine whether activation of alpha-SMA expression in myofibroblasts in vivo is dependent on an intronic CArG [CC(A/T)6GG] and a transforming growth factor-beta1 control element (TCE) that are required for alpha-SMA expression in smooth muscle cells. A Lac Z transgene construct from -2600 through the first intron was expressed in myofibroblasts within granulation tissue of cutaneous wounds in a pattern that closely mimicked endogenous alpha-SMA expression. Mutation of either the intronic CArG element or the TCE completely inhibited transgene expression in myofibroblasts in granulation tissue and responsiveness to transforming growth factor-beta1 in cultured transgenic fibroblasts. These same elements were also critical in regulating alpha-SMA expression during skeletal muscle repair but not during skeletal muscle development. Taken together, these results provide the first in vivo evidence for the importance of the intronic CArG and TCE cis-elements in the regulation of alpha-SMA expression in myofibroblasts in granulation tissue.


Assuntos
Actinas/genética , Actinas/metabolismo , Fibroblastos/metabolismo , Genes Reguladores/fisiologia , Tecido de Granulação/metabolismo , Íntrons/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Regulação da Expressão Gênica , Genes Reporter , Tecido de Granulação/citologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação/fisiologia , Regiões Promotoras Genéticas/fisiologia , Ratos , Fator de Resposta Sérica/metabolismo , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA