Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 178: 339-350, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29784475

RESUMO

The use of catheters is ubiquitous in medicine and the incidence of infection remains unacceptably high despite numerous advances in functional surfaces and drug elution. Herein we report the use of a thermoplastic polyurethane containing an allyl ether side-chain functionality (allyl-TPU) that allows for rapid and convenient surface modification with antimicrobial reagents, post-processing. This post-processing functionalization affords the ability to target appropriate TPU properties and maintain the functional groups on the surface of the device where they do not affect bulk properties. A series of quaternary ammonium thiol compounds (Qx-SH) possessing various hydrocarbon tail lengths (8-14 carbons) were synthesized and attached to the surface using thiol-ene "click" chemistry. A quantitative assessment of the amount of Qx-SH available on the surface was determined using fluorescence spectroscopy and X-ray photoelectron spectroscopy (XPS). Contact-killing assays note the Q8-SH composition has the highest antimicrobial activity, and a live/dead fluorescence assay reveals rapid contact-killing of Staphylococcus aureus (>75% in 5 min) and Escherichia coli (90% in 10 min) inocula. Scale-up and extrusion of allyl-TPU provides catheter prototypes for biofilm formation testing with Pseudomonas aeruginosa, and surface-functionalized catheters modified with Q8-SH demonstrate their ability to reduce biofilm formation.


Assuntos
Catéteres/microbiologia , Plásticos/farmacologia , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Temperatura , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Células NIH 3T3 , Espectroscopia Fotoeletrônica , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Compostos de Sulfidrila/química , Propriedades de Superfície
2.
J Virol ; 82(3): 1414-24, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032498

RESUMO

We previously described mouse hepatitis virus (MHV) variant V51 derived from a persistent infection of murine DBT cells with an expanded host range (R. S. Baric, E. Sullivan, L. Hensley, B. Yount, and W. Chen, J. Virol. 73:638-649, 1999). Sequencing of the V51 spike gene, the mediator of virus entry, revealed 13 amino acid substitutions relative to the originating MHV A59 strain. Seven substitutions were located in the amino-terminal S1 cleavage subunit, and six were located in the carboxy-terminal S2 cleavage subunit. Using targeted RNA recombination, we constructed a panel of recombinant viruses to map the mediators of host range to the six substitutions in S2, with a subgroup of four changes of particular interest. This subgroup maps to two previously identified domains within S2, a putative fusion peptide and a heptad repeat, both conserved features of class I fusion proteins. In addition to an altered host range, V51 displayed altered utilization of CEACAM1a, the high-affinity receptor for A59. Interestingly, a recombinant with S1 from A59 and S2 from V51 was severely debilitated in its ability to productively infect cells via CEACAM1a, while the inverse recombinant was not. This result suggests that the S2 substitutions exert powerful effects on the fusion trigger that normally passes from S1 to S2. These novel findings play against the existing data that suggest that MHV host range determinants are located in the S1 subunit, which harbors the receptor binding domain, or involve coordinating changes in both S1 and S2. Mounting evidence also suggests that the class I fusion mechanism may possess some innate plasticity that regulates viral host range.


Assuntos
Substituição de Aminoácidos/genética , Glicoproteínas de Membrana/fisiologia , Vírus da Hepatite Murina/fisiologia , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Animais , Antígeno Carcinoembrionário/metabolismo , Gatos , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Vírus da Hepatite Murina/genética , Glicoproteína da Espícula de Coronavírus , Suínos , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...