Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 33(Pt 6): 1441-3, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16246141

RESUMO

The nucleolus is the site of rRNA transcription, pre-rRNA processing and ribosome subunit assembly. The nucleolus assembles around clusters of ribosomal gene repeats during late telophase, persists throughout interphase and then disassembles as cells enter mitosis. The initial step in nucleolar formation is ribosomal gene transcription, which is mediated by Pol I (RNA polymerase I) and its associated transcription factors: UBF (upstream-binding factor), SL1 (selectivity factor) and TIF-IA (transcription initiation factor IA)/Rrn3. Ribosomal gene clusters, termed NORs (nucleolar organizer regions), are found on each of the five human acrocentric chromosomes. Though transcription is repressed during metaphase, NORs that were active in the previous interphase form prominent cytogenetic features, namely secondary constrictions. The main defining characteristic of these constrictions is under-condensation in comparison with the rest of the chromosome. Extensive binding of UBF over the ribosomal gene repeat is responsible for the formation of this chromosomal feature. During interphase, the majority of the Pol I transcription machinery, though present in nucleoli, is not actively engaged in transcription. Interaction with UBF bound across the gene repeat provides an explanation for how this non-engaged Pol I machinery is sequestered by nucleoli.


Assuntos
Nucléolo Celular/metabolismo , Ribossomos , Transcrição Gênica , Cromossomos/genética , Cromossomos/metabolismo , Humanos , RNA Polimerase I/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo
2.
EMBO J ; 20(11): 2867-74, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11387219

RESUMO

Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids. Human ribosomal genes are transcriptionally silent in this context. Combined immunofluorescence and in situ hybridization (immuno-FISH) on three-dimensional preserved nuclei showed that human acrocentric chromosomes associate with hybrid cell nucleoli. Analysis of purified nucleoli demonstrated that human and mouse NORs are equally likely to be within a hybrid cell nucleolus. This is supported further by the observation that murine upstream binding factor can associate with human NORs. Incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.


Assuntos
Cromossomos Humanos/genética , DNA Ribossômico/genética , Inativação Gênica , Região Organizadora do Nucléolo/genética , RNA Ribossômico 28S/genética , Transcrição Gênica , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromossomos Humanos/ultraestrutura , Imunofluorescência , Células HeLa , Humanos , Células Híbridas , Hibridização in Situ Fluorescente , Metáfase , Camundongos , Região Organizadora do Nucléolo/ultraestrutura , Reação em Cadeia da Polimerase
3.
Nucleic Acids Res ; 26(15): 3555-61, 1998 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9671818

RESUMO

Transcription of Xenopus ribosomal genes by RNA polymerase I is directed by a stable transcription complex that forms on the gene promoter. This complex is comprised of the HMG box factor UBF and the TBP-containing complex Rib1. Repeated sequence elements found upstream of the ribosomal gene promoter act as RNA polymerase I-specific trans-criptional enhancers. These enhancers function by increasing the probability of a stable transcription complex forming on the adjacent promoter. UBF is required for enhancer function. This role in enhancement is distinct from that at the promoter and does not involve translocation of UBF from enhancer repeats to the promoter. Here we utilize an in vitro system to demonstrate that a combination of the dimerization domain of UBF and HMG boxes 1-3 are sufficient to specify its role in enhancement. We also demonstrate that the acidic C-terminus of UBF is primarilyresponsible for its observed interaction with Rib1. Thus, we have uncoupled the Rib1 interaction and enhancer functions of UBF and can conclude that direct interaction with Rib1 is not a prerequisite for the enhancer function of UBF.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Dimerização , Elementos Facilitadores Genéticos , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mutagênese , Regiões Promotoras Genéticas , Fatores de Transcrição/biossíntese , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Xenopus , Proteínas de Xenopus
4.
J Cell Sci ; 110 ( Pt 17): 2053-63, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9378756

RESUMO

When nuclei (pronuclei) were assembled from sperm chromatin in Xenopus egg extract and examined by immunofluorescence microscopy, UBF was concentrated at a single intranuclear dot-like or more extended necklace-like structure. These UBF-foci contained rDNA as demonstrated by in situ hybridization and hence represent the chromosomal nucleolus organizing regions (NORs). Besides UBF, other components of the transcription machinery such as the TATA-box binding protein (TBP) and RNA polymerase I (pol I) as well as several nucleolar proteins could not be detected at the NORs. Immuno-depletion experiments indicated the UBF is maternally provided and taken up by the pronuclei. Essentially the same results were obtained when we examined the NORs of early Xenopus embryos up to the midblastula stage. After this stage, when transcription of the rRNA genes has begun, nucleoli developed and the NORs acquired TBP and pol I. Our results support the hypothesis that UBF is an architectural element which converts the rDNA chromatin into a transcriptionally competent form.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Região Organizadora do Nucléolo/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óperon de RNAr/fisiologia , Animais , Especificidade de Anticorpos , Blastocisto/química , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/química , DNA Ribossômico/análise , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/imunologia , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Região Organizadora do Nucléolo/metabolismo , RNA Polimerase I/análise , RNA Polimerase I/imunologia , Espermatozoides/química , Proteína de Ligação a TATA-Box , Fatores de Transcrição/análise , Fatores de Transcrição/imunologia , Transcrição Gênica/fisiologia , Xenopus laevis
5.
EMBO J ; 16(2): 396-405, 1997 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9029158

RESUMO

Repeated sequence elements found upstream of the ribosomal gene promoter in Xenopus function as RNA polymerase I-specific transcriptional enhancers. Here we describe an in vitro system in which these enhancers function in many respects as in vivo. The principal requirement for enhancer function in vitro is the presence of a high concentration of upstream binding factor (UBF). This system is utilized to demonstrate that enhancers function by increasing the probability of a stable transcription complex forming on the adjacent promoter. Species differences in UBF are utilized to demonstrate that enhancers do not act by recruiting UBF to the promoter, rather UBF performs its own distinct role at the enhancers. UBF function in enhancement differs from that at the promoter, as it is flexible with respect to both the species of UBF and the enhancer element employed. Additionally, we identify a potential role for the mammalian UBF splice variant, UBF2, in enhancer function. We demonstrate that the TATA box binding protein (TBP)-containing component of Xenopus RNA polymerase I transcription, Rib1, can interact with an enhancer-UBF complex. This suggests a model in which enhancers act by recruiting Rib1 to the promoter.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Mapeamento por Restrição , Moldes Genéticos , Fatores de Transcrição/metabolismo , Xenopus , Proteínas de Xenopus
6.
Mol Cell Biol ; 16(10): 5572-8, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8816469

RESUMO

Initiation of RNA polymerase I transcription in Xenopus laevis requires Rib 1 and upstream binding factor (UBF). UBF and Rib 1 combine to form a stable transcription complex on the Xenopus ribosomal gene promoter. Here we show that Rib 1 comprises TATA-binding protein (TBP) and TBP-associated factor components. Thus, Rib 1 is the Xenopus equivalent of mammalian SL 1. In contrast to SL 1, Rib 1 is an unstable complex that readily dissociates into TBP and associated components. We identify a novel function for UBF in stabilizing Rib 1 by multiple protein interactions. This stabilization occurs in solution in a DNA-independent manner. These results may partially explain the difference in UBF requirement between Xenopus and mammalian systems.


Assuntos
DNA/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mamíferos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Biossíntese de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , TATA Box , Proteína de Ligação a TATA-Box , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Transcrição Gênica , Proteínas de Xenopus , Xenopus laevis
7.
Nucleic Acids Res ; 23(22): 4583-90, 1995 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-8524646

RESUMO

Transcription of ribosomal genes requires, in addition to RNA polymerase I, the trans-acting factors UBF and Rib1 in Xenopus or SL1 in humans. RNA polymerase I transcription is remarkably species specific. Between closely related species SL1 is the sole determinant of this specificity. Between more distantly related species, however, UBF is also a component of this species specificity. Xenopus UBF cannot function in human RNA polymerase I transcription and human UBF cannot function in Xenopus RNA polymerase I transcription. Xenopus and human UBFs are remarkably similar at the amino acid sequence level, both containing multiple HMG box DNA binding motifs. The only major difference between xUBF and hUBF is the lack of a HMG box 4 equivalent in xUBF. Utilizing a series of hybrid UBF molecules we have identified HMG box 4 as the principal determinant of species specificity. Addition of human HMG box 4 to xUBF converts it to a form that functions in human RNA polymerase I transcription. Deletion of HMG box 4 from hUBF converts it to a form that functions in Xenopus RNA polymerase I transcription. Furthermore, mutations within Xenopus UBF demonstrate that UBF requires a precise arrangement and number of HMG boxes to function in RNA polymerase I transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Proteínas de Ligação a DNA/biossíntese , Humanos , Cinética , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Spodoptera , Fatores de Transcrição/biossíntese , Transfecção , Xenopus
8.
J Cell Sci ; 108 ( Pt 10): 3339-47, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7593294

RESUMO

The monoclonal antibody G1C7, recognises both Xenopus nucleolin and a protein of 180 kDa present in Xenopus oocyte nucleoli. This antibody was used to obtain a cDNA clone encoding the 180 kDa protein now called xNopp180 (Xenopus nucleolar phosphoprotein of 180 kDa). Analysis of the deduced amino acid sequence from this cDNA shows that xNopp180 is almost entirely composed of alternating acidic and basic domains. We show that xNopp180 is heavily phosphorylated and that it contains multiple consensus sites for phosphorylation by casein kinase II and cdc2 kinase. In addition we show that xNopp180 is the 180 kDa antigen recognised by the monoclonal antibody No-114, thus allowing reinterpretation of previous work with this antibody. xNopp180 appears to be the Xenopus homolog of the rat nucleolar protein Nopp140. Nopp140 is a nuclear localisation signal binding protein that shuttles on curvilinear tracks between the nucleolus and the cytoplasm. Possible roles for xNopp180/Nopp140 in ribosome biogenesis are discussed.


Assuntos
Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Xenopus , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Xenopus/genética
9.
Mol Cell Biol ; 14(5): 2871-82, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8164649

RESUMO

Xenopus UBF (xUBF) is a transcription factor for RNA polymerase I which contains multiple DNA-binding motifs. These include a short basic region adjacent to a dimer motif plus five high-mobility-group (HMG) boxes. All of these DNA-binding motifs exhibit low sequence specificity, whether assayed singly or together. In contrast, the HMG boxes recognize DNA structure that is formed when two double helices are crossed over each other. HMG box 1, in particular, requires association of two double helices before it will bind and, either by itself or in the context of the intact protein, will loop DNA and organize it into higher-order structures. We discuss how this mode of binding affects the function of xUBF as a transcription factor.


Assuntos
Troca Genética , DNA/metabolismo , RNA Polimerase I/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA/química , DNA/ultraestrutura , Sondas de DNA , Proteínas de Grupo de Alta Mobilidade/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Mapeamento por Restrição , Fatores de Transcrição/biossíntese , Fatores de Transcrição/ultraestrutura , Proteínas de Xenopus , Xenopus laevis
10.
Nucleic Acids Res ; 21(15): 3451-7, 1993 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-8393988

RESUMO

In mammalian cells, RNA polymerase I transcripts are uncapped and retain a polyphosphate 5' terminus. It is probably for this reason that they are poorly translated as messenger RNA. We show in this report that insertion of an Internal Ribosome Entry Site (IRES) into the 5' leader of an RNA polymerase I transcript overcomes the block to translation, presumably by substituting for the 5' trimethyl G cap. Addition of an SV40 polyA addition signal also enhances protein production from the RNA polymerase I transcript. RNA Polymerase I driven expression vectors containing both elements produce protein at levels comparable to that produced from RNA polymerase II driven expression vectors which utilize a retroviral LTR. RNA Polymerase I driven expression vectors may have a variety of uses both for basic research and for practical expression of recombinant proteins.


Assuntos
Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA Ribossômico/genética , Desoxirribonuclease EcoRI , Resistência a Medicamentos/genética , Humanos , Canamicina Quinase , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neomicina , Fosfotransferases/genética , Plasmídeos , Poli A/genética , Ratos , Vírus 40 dos Símios/genética , Transcrição Gênica , Transfecção
11.
Genes Dev ; 5(11): 1957-68, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1936987

RESUMO

Xenopus laevis upstream binding factor (xUBF) is an RNA polymerase I transcription factor that is required for formation of the stable initiation complex. The 701-amino-acid protein contains three regions of homology to the chromosomal protein HMG1 (the HMG boxes), which act in comparative independence to cause DNA binding. DNA binding is augmented by a 102-residue amino-terminal domain that causes xUBF to form dimers. The dimerization domain is bipartite in structure, consisting of two regions with the potential to form amphipathic helices, separated by a gap of at least 22 amino acids. The carboxyl half of xUBF is relatively dispensable for transcription (including an 87-residue acidic tail). However, either altering the number of HMG boxes or interfering with dimerization eliminates transcription. The gap region of the dimerization domain is dispensable for dimerization but is absolutely required for transcription. This suggests that the gap region has a critical function in transcription distinct from any effect on dimerization or DNA binding.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , DNA Ribossômico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Glutaral/química , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutação/genética , Nucleoproteínas/química , Oligodesoxirribonucleotídeos/genética , Plasmídeos/genética , Testes de Precipitina , Regiões Promotoras Genéticas/fisiologia , Conformação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Xenopus laevis/fisiologia
12.
EMBO J ; 10(8): 2297-303, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2065665

RESUMO

We show that three protein fractions are required for accurate transcription initiation at a Xenopus laevis ribosomal gene promoter in vitro: RNA polymerase I, Rib1 and xUBF. The Rib1 and xUBF fractions are both necessary and sufficient for formation of a stable initiation complex. The xUBF fraction can be completely replaced by recombinant xUBF. We also report the sequence of a cDNA clone for xUBF. xUBF is 701 amino acids in length, contains domain which are related to a domain found in chromosomal proteins HMG 1 and 2, and has an acidic carboxy terminus of 87 amino acids. xUBF is closely similar in amino acid sequence to its previously reported human homolog, hUBF, except that xUBF has only three of the HMG-related domains while hUBF has four and therefore is 63 amino acids longer than xUBF.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Regiões Promotoras Genéticas , RNA Polimerase I/genética , Fatores de Transcrição/genética , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida , DNA/genética , Dados de Sequência Molecular , Plasmídeos , Biossíntese de Proteínas , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
13.
Genes Dev ; 4(7): 1240-51, 1990 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2210376

RESUMO

On the ribosomal genes of Xenopus laevis, the T3 terminator is located approximately 60 bp upstream of the 5' boundary of the gene promoter. We have shown previously that mutation of the terminator simultaneously abolishes termination and impairs initiation by RNA polymerase I. Here, we show that the terminator influences the promoter by two distinct mechanisms. In one mechanism the terminator protects the promoter by preventing polymerase from reading through the initiation complex. In a second mechanism, the terminator interacts directly with the promoter, whether or not termination occurs. This positive interaction requires precise positioning of the terminator relative to the promoter and is sensitive to movement of the terminator by as little as 1 or 2 bp. We conclude that the terminator and promoter interact as one interdependent complex.


Assuntos
DNA Ribossômico/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica , Xenopus laevis/genética , Animais , Sequência de Bases , Dados de Sequência Molecular , RNA Polimerase II/metabolismo , RNA Ribossômico/biossíntese , RNA Ribossômico/genética
14.
Mol Cell Biol ; 10(6): 2793-800, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2342463

RESUMO

We describe a partially fractionated in vitro transcription system from Xenopus laevis for the assay of transcription termination by RNA polymerase I. Termination in vitro was found to require a specific terminator sequence in the DNA and a DNA-binding protein fraction that produces a footprint over the terminator sequence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genes Reguladores , RNA Polimerase I/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica , Animais , Sequência de Bases , Ligação Competitiva , Linhagem Celular , Núcleo Celular/metabolismo , Desoxirribonuclease I , Regulação da Expressão Gênica , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Plasmídeos , Mapeamento por Restrição , Moldes Genéticos , Xenopus laevis
15.
Genes Dev ; 3(11): 1779-88, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2606347

RESUMO

We purified xUBF on the basis of its ability to specifically bind the enhancer elements of the Xenopus laevis rRNA genes. xUBF also binds to both upstream and downstream regions of the X. laevis ribosomal gene promoter and is essential for polymerase I transcription. Unexpectedly, xUBF binds to both upstream and downstream regions of the human ribosomal gene promoter, producing footprints that are indistinguishable from the footprints produced by hUBF, a previously described polymerase I transcription factor isolated from human cells. Despite extensive sequence divergence of vertebrate polymerase I promoters, these data suggest an evolutionary conservation of the primary DNA-protein interaction.


Assuntos
Elementos Facilitadores Genéticos , RNA Ribossômico/genética , Fatores de Transcrição/metabolismo , Xenopus laevis/genética , Animais , Sequência de Bases , Cromatografia de Afinidade , DNA Polimerase I/metabolismo , DNA Ribossômico/metabolismo , Desoxirribonuclease I/metabolismo , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica , Proteínas de Xenopus
16.
Nucleic Acids Res ; 15(18): 7429-41, 1987 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-3658698

RESUMO

We have assayed a series of linker scanner mutants which cover the Xenopus laevis ribosomal gene promoter at approximately ten base pair intervals. All of these mutations adversely affect promoter activity with the exception of one mutation which stimulates activity. Thus, none are neutral. We show that most of the mutations can be partially rescued by ligating a block of enhancer elements upstream of the promoter. In addition, we have made extracts from liver nuclei which produce DNaseI protection footprints over the promoter. Analysis of both strands reveals a prominent footprinting domain from about -5 to -30. However, lesser changes in the digestion pattern are detected over most of the promoter. Previously published analyses have suggested that this promoter might be composed of three functional domains. The experiments presented here suggest that either 1) the three putative domains are so closely arranged that the boundaries are difficult to discern, or 2) the situation is more complex.


Assuntos
DNA Ribossômico/genética , Regiões Promotoras Genéticas , RNA Ribossômico/genética , Xenopus laevis/genética , Animais , Sequência de Bases , DNA Recombinante/metabolismo , DNA Ribossômico/metabolismo , Elementos Facilitadores Genéticos , Feminino , Genes Sintéticos , Dados de Sequência Molecular , Mutação , Oócitos , RNA Polimerase I/metabolismo
18.
Cell ; 47(6): 913-20, 1986 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-3779846

RESUMO

On the Xenopus laevis ribosomal genes, RNA polymerase traverses the entire repeating unit of gene plus spacer and terminates just upstream of the next gene promoter. A conserved 7 bp element located at about -200 is an essential part of this terminator. In this paper we show that, in addition to its termination function, this same sequence motif acts as an upstream element of the adjacent promoter and appears to contribute to the long-term stability of the transcription complex.


Assuntos
DNA Ribossômico/genética , Genes Reguladores , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Regiões Terminadoras Genéticas , Animais , Sequência de Bases , Mutação , Moldes Genéticos , Transcrição Gênica , Xenopus laevis
19.
Nucleic Acids Res ; 11(23): 8167-81, 1983 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-6324076

RESUMO

We have determined the origin of the major transcript of Xenopus borealis rDNA by the use of an SI nuclease protection assay. The DNA surrounding the origin of this transcript was sequenced, and the region upstream of the origin was shown to have strong sequence homology with that region from X.laevis rDNA. We have also demonstrated faithful transcription from this origin using cloned X.borealis rDNA in an extract derived from X. laevis culture cells. This in vitro transcription was insensitive to 100 micrograms/ml alpha-amanatin, suggesting that it was mediated by RNA polymerase 1.


Assuntos
DNA/genética , RNA Ribossômico/genética , Transcrição Gênica , Xenopus/genética , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Enzimas de Restrição do DNA , DNA Ribossômico , Endonucleases , Feminino , Oócitos/metabolismo , Plasmídeos , Endonucleases Específicas para DNA e RNA de Cadeia Simples
20.
Nucleic Acids Res ; 11(16): 5361-80, 1983 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-6310495

RESUMO

We have detected a DNAseI hypersensitive site in the ribosomal DNA spacer of Xenopus laevis and Xenopus borealis. The site is present in blood and embryonic nuclei of each species. In interspecies hybrids, however, the site is absent in unexpressed borealis rDNA, but is present normally in expressed laevis rDNA. Hypersensitive sites are located well upstream (over lkb) of the pre-ribosomal RNA promoter. Sequencing of the hypersensitive region in borealis rDNA, however, shows extensive homology with the promoter sequence, and with the hypersensitive region in X. laevis. Of two promoter-like duplications in each spacer, only the most upstream copy is associated with hypersensitivity to DNAaseI. Unlike DNAaseI, Endo R. MspI digests the rDNA of laevis blood nuclei at a domain extending downstream from the hypersensitive site to near the 40S promoter. Since the organisation of conserved sequence elements within this "proximal domain" is similar in three Xenopus species whose spacers have otherwise evolved rapidly, we conclude that this domain plays an important role in rDNA function.


Assuntos
DNA/genética , Endodesoxirribonucleases/metabolismo , Genes , Óperon , Animais , Sequência de Bases , Enzimas de Restrição do DNA , DNA Ribossômico , Desoxirribonuclease I , Embrião não Mamífero , Feminino , Masculino , Hibridização de Ácido Nucleico , Plasmídeos , Especificidade da Espécie , Espermatozoides/análise , Especificidade por Substrato , Transcrição Gênica , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...