Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(37): 42030-42040, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32876431

RESUMO

Surface modification offers a straightforward means to alter and enhance the properties and performance of materials, such as nanofiltration membranes for water softening. Herein, we demonstrate how a membrane's surface charge can be altered by grafting different electrostatically varying copolymers onto commercial membrane surfaces using perfluorophenylazide (PFPA) photochemistry for enhanced ion separation performance. The native membrane's performance-i.e., in terms of divalent cation separation-with copolymer coatings containing a positively charged quaternary ammonium (-N(Me)3+), a negatively charged sulfonate (-SO3-), and an essentially neutral zwitterion (sulfobetaine, -N(Me)2R2+, and -SO3-), respectively, indicates that: (a) the sulfonated polymer induces robust Coulombic exclusion of divalent anions as compared to the negatively charged native membrane surface on account of its higher negative charge; (b) the positively charged ammonium coating induces exclusion of cations more effectively than the native membrane; and significantly, (c) the zwitterion polymer coating, which reduces the surface roughness and improves wettability, in spite of its near-neutral charge enhances exclusion of both divalent cations and anions on account of aperture sieving by the compact zwitterion polymer that arises from its ability to limit the size of ions that transport through the polymer along with dielectric exclusion. The outcomes thereby inform new pathways to achieve size- and charge-based exclusion of ionic, molecular, and other species contained in liquid streams.

2.
ACS Appl Mater Interfaces ; 12(27): 30796-30804, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32463653

RESUMO

Thin-film composite (TFC) membranes are favored for precise molecular sieving in liquid-phase separations; they possess high permeability due to the minimal thickness of the active layer and the high porosity of the support layer. However, current TFC membrane fabrication techniques are limited by the available materials for the selective layer and do not demonstrate the level of structural control needed to substantially advance organic solvent nanofiltration (OSN) membrane technology. In this work, we employ the newly developed thin-film lift-off (T-FLO) technique to fabricate polybenzimidazole (PBI) TFC membranes with porous support layers uniquely tailored to OSN. The drop-cast dense PBI selective layers endow the membranes with an almost complete rejection of common small dye molecules. The polymeric support layer is optimized by a combinatorial approach using four different monomers that alter the cross-linking density and polymer chain flexibility of the final composite. These two properties substantially affect the porogen holding capacity of the reticular polymer network, leading to the formation of different macropore structures. With a 150 nm thick PBI selective layer and fine-tuning of the support layer, the resulting membrane achieves stable and superior permeance of 14.0, 11.7, 16.4, 11.4, 17.1, and 19.7 L m-2 h-1 bar-1 for water, ethanol, methanol, isopropanol, tetrahydrofuran (THF), and acetonitrile, respectively.

3.
Nano Lett ; 20(4): 2209-2218, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32058724

RESUMO

Graphene oxide (GO) membranes have great potential for separation applications due to their low-friction water permeation combined with unique molecular sieving ability. However, the practical use of deposited GO membranes is limited by the inferior mechanical robustness of the membrane composite structure derived from conventional deposition methods. Here, we report a nanostructured GO membrane that possesses great permeability and mechanical robustness. This composite membrane consists of an ultrathin selective GO nanofilm (as low as 32 nm thick) and a postsynthesized macroporous support layer that exhibits excellent stability in water and under practical permeability testing. By utilizing thin-film lift off (T-FLO) to fabricate membranes with precise optimizations in both selective and support layers, unprecedented water permeability (47 L·m-2·hr-1·bar-1) and high retention (>98% of solutes with hydrated radii larger than 4.9 Å) were obtained.

4.
Chem Sci ; 10(16): 4445-4457, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31057772

RESUMO

Conjugated polyaniline has shown anticorrosive, hydrophilic, antibacterial, pH-responsive, and pseudocapacitive properties making it of interest in many fields. However, in situ grafting of polyaniline without harsh chemical treatments is challenging. In this study, we report a simple, fast, and non-destructive surface modification method for grafting tetraaniline (TANI), the smallest conjugated repeat unit of polyaniline, onto several materials via perfluorophenylazide photochemistry. The new materials are characterized by nuclear magnetic resonance (NMR) and electrospray ionization (ESI) mass spectroscopy. TANI is shown to be covalently bonded to important carbon materials including graphite, carbon nanotubes (CNTs), and reduced graphene oxide (rGO), as confirmed by transmission electron microscopy (TEM). Furthermore, large area modifications on polyethylene terephthalate (PET) films through dip-coating or spray-coating demonstrate the potential applicability in biomedical applications where high transparency, patternability, and low bio-adhesion are needed. Another important application is preventing biofouling in membranes for water purification. Here we report the first oligoaniline grafted water filtration membranes by modifying commercially available polyethersulfone (PES) ultrafiltration (UF) membranes. The modified membranes are hydrophilic as demonstrated by captive bubble experiments and exhibit extraordinarily low bovine serum albumin (BSA) and Escherichia coli adhesions. Superior membrane performance in terms of flux, BSA rejection and flux recovery after biofouling are demonstrated using a cross-flow system and dead-end cells, showing excellent fouling resistance produced by the in situ modification.

5.
ACS Appl Mater Interfaces ; 8(23): 14334-8, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27231843

RESUMO

Azide-functionalized graphene oxide (AGO) was covalently anchored onto commercial reverse osmosis (RO) membrane surfaces via azide photochemistry. Surface modification was carried out by coating the RO membrane with an aqueous dispersion of AGO followed by UV exposure under ambient conditions. This simple process produces a hydrophilic, smooth, antibacterial membrane with limited reduction in water permeability or salt selectivity. The GO-RO membrane exhibited a 17-fold reduction in biofouling after 24 h of Escherichia coli contact and almost 2 times reduced BSA fouling after a 1 week cross-flow test compared to its unmodified counterpart.


Assuntos
Incrustação Biológica/prevenção & controle , Grafite/química , Membranas Artificiais , Óxidos/química , Antibacterianos/química , Antibacterianos/farmacologia , Osmose , Óxidos/farmacologia , Fotoquímica
6.
Macromol Rapid Commun ; 35(17): 1528-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042670

RESUMO

We present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements. By employing X-ray photoelectron spectroscopy, it was determined that PFPAs undergo UV-generated nitrene addition and bind to the membrane through an aziridine linkage. After modification with the PFPA-PEG derivatives, the reverse osmosis membranes exhibit high fouling-resistance.


Assuntos
Azidas/química , Hidrocarbonetos Fluorados/química , Membranas Artificiais , Purificação da Água , Aziridinas/química , Incrustação Biológica , Iminas/química , Espectroscopia Fotoeletrônica , Espectrofotometria Infravermelho , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...