Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 3): 688-706, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949979

RESUMO

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.

2.
Phys Rev Lett ; 122(25): 255704, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347883

RESUMO

Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I^{'}, is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.

3.
Sci Rep ; 8(1): 16927, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446720

RESUMO

Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.

4.
Phys Rev Lett ; 118(2): 025501, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128621

RESUMO

Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

6.
Phys Rev Lett ; 108(6): 065701, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401087

RESUMO

Laser-driven shock compression experiments reveal the presence of a phase transition in MgSiO(3) over the pressure-temperature range 300-400 GPa and 10 000-16 000 K, with a positive Clapeyron slope and a volume change of ∼6.3 (±2.0) percent. The observations are most readily interpreted as an abrupt liquid-liquid transition in a silicate composition representative of terrestrial planetary mantles, implying potentially significant consequences for the thermal-chemical evolution of extrasolar planetary interiors. In addition, the present results extend the Hugoniot equation of state of MgSiO(3) single crystal and glass to 950 GPa.

7.
Phys Rev Lett ; 104(18): 184503, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482179

RESUMO

By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm(3) at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above approximately 1.9 g/cm(3). These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.

8.
Phys Rev Lett ; 100(12): 124503, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18517873

RESUMO

Hugoniot data were obtained for fluid He in the 100 GPa pressure range by shock compression of samples statically precompressed in diamond-anvil cells. The initial (precompressed) He density (rho_(1)) for each experiment was tuned to a value between rho_(0L) or =3rho_{0L} (i.e., rho/rho_(0L)> or =12). Data show an increase in compressibility at the onset of ionization, similar to theoretical predictions.

9.
Radiat Res ; 94(3): 499-507, 1983 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-6856786

RESUMO

The production and repair of DNA strand breaks was studied in human lymphocytes by means of a sensitive fluorometric technique. Lymphocytes were isolated by conventional methods and air-equilibrated suspensions were irradiated by low doses (less than or equal to 2 Gy) of either 60Co gamma rays or 14.6-MeV neutrons at 0 degree C. The apparent yield of initial strand breaks induced by neutrons was only 36% of that induced by gamma rays, in agreement with the observations of other workers. Resting lymphocytes were found to be proficient in their ability to rejoin gamma-induced strand breaks at 37 degrees C; rejoining followed biphasic kinetics, with 70% of the breaks disappearing with a half-life of about 3 min. Although the initial number of breaks induced by neutron irradiation was low, after 20 min of incubation the residual number of breaks was very similar for the two forms of radiation.


Assuntos
Reparo do DNA/efeitos da radiação , DNA/efeitos da radiação , Linfócitos/efeitos da radiação , Animais , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Raios gama , Humanos , Linfócitos/metabolismo , Camundongos , Nêutrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...