Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(20): 13967-13987, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36150180

RESUMO

We analyzed the P2X4 receptor structure-activity relationship of a known antagonist 5, a 1,5-dihydro-2H-naphtho[1,2-b][1,4]diazepine-2,4(3H)-dione. Following extensive modification of the reported synthetic route, 4-pyridyl 21u (MRS4719) and 6-methyl 22c (MRS4596) analogues were most potent at human (h) P2X4R (IC50 0.503 and 1.38 µM, respectively, and selective versus hP2X1R, hP2X2/3R, hP2X3R). Thus, the naphthalene 6-, but not 7-position was amenable to substitution, and an N-phenyl ring aza-scan identified 21u with 3-fold higher activity than 5. Compounds 21u and 22c showed neuroprotective and learning- and memory-enhancing activities in a mouse middle cerebral artery occlusion (MCAO) model of ischemic stroke, with potency of 21u > 22c. 21u dose-dependently reduced infarct volume and reduced brain atrophy at 3 and 35 days post-stroke, respectively. Relevant to clinical implication, 21u also reduced ATP-induced [Ca2+]i influx in primary human monocyte-derived macrophages. This study indicates the translational potential of P2X4R antagonists for treating ischemic stroke, including in aging populations.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Animais , Camundongos , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X4 , Modelos Animais de Doenças , Relação Estrutura-Atividade , Azepinas , Trifosfato de Adenosina , Naftalenos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
J Vis Exp ; (184)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35815995

RESUMO

There is no effective treatment available for most patients suffering with ischemic stroke, making development of novel therapeutics imperative. The brain's ability to self-heal after ischemic stroke is limited by inadequate blood supply in the impacted area. Encephalomyosynangiosis (EMS) is a neurosurgical procedure that achieves angiogenesis in patients with moyamoya disease. It involves craniotomy with placement of a vascular temporalis muscle graft on the ischemic brain surface. EMS has never been studied in the setting of acute ischemic stroke in mice. The hypothesis driving this study is that EMS enhances cerebral angiogenesis at the cortical surface surrounding the muscle graft. The protocol shown here describes the procedure and provides initial data supporting the feasibility and efficacy of the EMS approach. In this protocol, after 60 min of transient middle cerebral artery occlusion (MCAo), mice were randomized to either MCAo or MCAo + EMS treatment. The EMS was performed 3-4 h after occlusion. The mice were sacrificed 7 or 21 days after MCAo or MCAo + EMS treatment. Temporalis graft viability was measured using nicotinamide adenine dinucleotide reduced-tetrazolium reductase assay. A mouse angiogenesis array quantified angiogenic and neuromodulating protein expression. Immunohistochemistry was used to visualize graft bonding with brain cortex and change in vessel density. The preliminary data here suggest that grafted muscle remained viable 21 days after EMS. Immunostaining showed successful graft implantation and increase in vessel density near the muscle graft, indicating increased angiogenesis. Data show that EMS increases fibroblast growth factor (FGF) and decreases osteopontin levels after stroke. Additionally, EMS after stroke did not increase mortality suggesting that protocol is safe and reliable. This novel procedure is effective and well-tolerated and has the potential to provide information of novel interventions for enhanced angiogenesis after acute ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Doença de Moyamoya , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Camundongos , Doença de Moyamoya/cirurgia , Neovascularização Patológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA