Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 14(3): 693-717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35688320

RESUMO

BACKGROUND AND AIMS: Mutations in DNA mismatch repair (MMR) genes are causative in Lynch syndrome and a significant proportion of sporadic colorectal cancers (CRCs). MMR-deficient (dMMR) CRCs display increased mutation rates, with mutations frequently accumulating at short repetitive DNA sequences throughout the genome (microsatellite instability). The TGFBR2 gene is one of the most frequently mutated genes in dMMR CRCs. Therefore, we generated an animal model to study how the loss of both TGFBR2 signaling impacts dMMR-driven intestinal tumorigenesis in vivo and explore the impact of the gut microbiota. METHODS: We generated VCMsh2/Tgfbr2 mice in which Msh2loxP and Tgfbr2loxP alleles are inactivated by Villin-Cre recombinase in the intestinal epithelium. VCMsh2/Tgfbr2 mice were analyzed for their rate of intestinal cancer development and for the mutational spectra and gene expression profiles of tumors. In addition, we assessed the impact of chemically induced chronic inflammation and gut microbiota composition on colorectal tumorigenesis. RESULTS: VCMsh2/Tgfbr2 mice developed small intestinal adenocarcinomas and CRCs with histopathological features highly similar to CRCs in Lynch syndrome patients. The CRCs in VCMsh2/Tgfbr2 mice were associated with the presence of colitis and displayed genetic and histological features that resembled inflammation-associated CRCs in human patients. The development of CRCs in VCMsh2/Tgfbr2 mice was strongly modulated by the gut microbiota composition, which in turn was impacted by the TGFBR2 status of the tumors. CONCLUSIONS: Our results demonstrate a synergistic interaction between MMR and TGFBR2 inactivation in inflammation-associated colon tumorigenesis and highlight the crucial impact of the gut microbiota on modulating the incidence of inflammation-associated CRCs.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Microbiota , Animais , Carcinogênese/genética , Neoplasias do Colo/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Humanos , Inflamação , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
2.
Methods Mol Biol ; 2076: 85-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31586323

RESUMO

Next-generation sequencing (NGS) is transforming clinical research and diagnostics, vastly enhancing our ability to identify novel disease-causing genetic mutations and perform comprehensive diagnostic testing in the clinic. Whole-exome sequencing (WES) is a commonly used method which captures the majority of coding regions of the genome for sequencing, as these regions contain the majority of disease-causing mutations. The clinical applications of WES are not limited to diagnosis; the technique can be employed to help determine an optimal therapeutic strategy for a patient considering their mutation profile. WES may also be used to predict a patient's risk of developing a disease, e.g., type 2 diabetes (T2D), and can therefore be used to tailor advice for the patient about lifestyle choices that could mitigate those risks. Thus, genome sequencing strategies, such as WES, underpin the emerging field of personalized medicine. Initiatives also exist for sharing WES data in public repositories, e.g., the Exome Aggregation Consortium (ExAC) database. In time, by mining these valuable data resources, we will acquire a better understanding of the roles of both single rare mutations and specific combinations of common mutations (mutation signatures) in the pathology of complex diseases such as diabetes.Herein, we describe a protocol for performing WES on genomic DNA extracted from blood or saliva. Starting with gDNA extraction, we document preparation of a library for sequencing on Illumina instruments and the enrichment of the protein-coding regions from the library using the Roche NimbleGen SeqCap EZ Exome v3 kit; a solution-based capture method. We include details of how to efficiently purify the products of each step using the AMPure XP System and describe how to use qPCR to test the efficiency of capture, and thus determine finished library quality.


Assuntos
Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Exoma , Éxons , Biblioteca Gênica , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA , Sequenciamento do Exoma/métodos , Fluxo de Trabalho
3.
Mol Genet Genomic Med ; 8(2): e1053, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880409

RESUMO

BACKGROUND: Next-generation sequencing (NGS)-based panels have gained traction as a strategy for reproductive carrier screening. Their value for screening Ashkenazi Jewish (AJ) individuals, who have benefited greatly from population-wide targeted testing, as well as Sephardi/Mizrahi Jewish (SMJ) individuals (an underserved population), has not been fully explored. METHODS: The clinical utilization by 6,805 self-reported Jewish individuals of an expanded NGS panel, along with several ancillary assays, was assessed retrospectively. Data were extracted for a subset of 96 diseases that, during the panel design phase, were classified as being AJ-, SMJ-, or pan-Jewish/pan-ethnic-relevant. RESULTS: 64.6% of individuals were identified as carriers of one or more of these 96 diseases. Over 80% of the reported variants would have been missed by following recommended AJ screening guidelines. 10.7% of variants reported for AJs were in "SMJ-relevant genes," and 31.2% reported for SMJs were in "AJ-relevant genes." Roughly 2.5% of individuals carried a novel, likely pathogenic variant. One in 16 linked cohort couples was identified as a carrier couple for at least one of these 96 diseases. CONCLUSION: For maximal carrier identification, this study supports using expanded NGS panels for individuals of all Jewish backgrounds. This approach can better empower at-risk couples for reproductive decision making.


Assuntos
Triagem de Portadores Genéticos/estatística & dados numéricos , Doenças Genéticas Inatas/etnologia , Judeus/genética , Triagem de Portadores Genéticos/normas , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Guias de Prática Clínica como Assunto , Cuidado Pré-Concepcional/normas , Cuidado Pré-Concepcional/estatística & dados numéricos
5.
Hum Mol Genet ; 24(18): 5126-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26089202

RESUMO

Sprouty proteins are regulators of cell growth and branching morphogenesis. Unlike mouse Spry3, which is X-linked, human SPRY3 maps to the pseudoautosomal region 2; however, the human Y-linked allele is not expressed due to epigenetic silencing by an unknown mechanism. SPRY3 maps adjacent to X-linked Trimethyllysine hydroxylase epsilon (TMLHE), recently identified as an autism susceptibility gene. We report that Spry3 is highly expressed in central and peripheral nervous system ganglion cells in mouse and human, including cerebellar Purkinje cells and retinal ganglion cells. Transient over-expression or knockdown of Spry3 in cultured mouse superior cervical ganglion cells inhibits and promotes, respectively, neurite growth and branching. A 0.7 kb gene fragment spanning the human SPRY3 transcriptional start site recapitulates the endogenous Spry3-expression pattern in LacZ reporter mice. In the human and mouse the SPRY3 promoter contains an AG-rich repeat and we found co-expression, and promoter binding and/or regulation of SPRY3 expression by transcription factors MAZ, EGR1, ZNF263 and PAX6. We identified eight alleles of the human SPRY3 promoter repeat in Caucasians, and similar allele frequencies in autism families. We characterized multiple SPRY3 transcripts originating at two CpG islands in the X-linked F8A3-TMLHE region, suggesting X chromosome regulation of SPRY3. These findings provide an explanation for differential regulation of X and Y-linked SPRY3 alleles. In addition, the presence of a SPRY3 transcript exon in a previously described X chromosome deletion associated with autism, and the cerebellar interlobular variation in Spry3 expression coincident with the reported pattern of Purkinje cell loss in autism, suggest SPRY3 as a candidate susceptibility locus for autism.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos X , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intracelular/genética , Regiões Promotoras Genéticas , Receptor PAR-2/genética , Alelos , Animais , Composição de Bases , Sequência de Bases , Linhagem Celular , Cerebelo/metabolismo , Ilhas de CpG , Metilação de DNA , Modelos Animais de Doenças , Éxons , Gânglios/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Loci Gênicos , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neuritos/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Artigo em Inglês | MEDLINE | ID: mdl-25806086

RESUMO

BACKGROUND: DNA methylation can be abnormally regulated in human disease and associated with effects on gene transcription that appear to be causally related to pathogenesis. The potential to use pharmacological agents that reverse this dysregulation is therefore an attractive possibility. To test how 5-aza-2'-deoxycytidine (5-aza-CdR) influences the genome therapeutically, we exposed non-malignant cells in culture to the agent and used genome-wide assays to assess the cellular response. RESULTS: We found that cells allowed to recover from 5-aza-CdR treatment only partially recover DNA methylation levels, retaining an epigenetic 'imprint' of drug exposure. We show very limited transcriptional responses to demethylation of not only protein-coding genes but also loci-encoding non-coding RNAs, with a limited proportion of the induced genes acquiring new promoter activation within gene bodies. The data revealed an uncoupling of DNA methylation effects at promoters, with demethylation mostly unaccompanied by transcriptional changes. The limited panel of genes induced by 5-aza-CdR resembles those activated in other human cell types exposed to the drug and represents loci targeted for Polycomb-mediated silencing in stem cells, suggesting a model for the therapeutic effects of the drug. CONCLUSIONS: Our results do not support the hypothesis of DNA methylation having a predominant role to regulate transcriptional noise in the genome and indicate that DNA methylation acts only as part of a larger complex system of transcriptional regulation. The targeting of 5-aza-CdR effects with its clastogenic consequences to euchromatin raises concerns that the use of 5-aza-CdR has innate tumorigenic consequences, requiring its cautious use in diseases involving epigenetic dysregulation.

7.
Genomics ; 100(6): 345-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22944616

RESUMO

The challenges associated with the management, analysis and interpretation of assays based on massively-parallel sequencing (MPS) are both individually complex and numerous. We describe what we believe to be the appropriate solution, one that represents a departure from traditional computational biology approaches. The Wasp System is an open source, distributed package written in Spring/J2EE that creates a foundation for development of an end-to-end solution for MPS-based experiments or clinical tests. Recognizing that one group will be unable to solve these challenges in isolation, we describe a nurtured open source development model that will allow the software to be collectively used, shared and developed. The ultimate goal is to emulate resources such as the Virtual Observatory of the astrophysics community, enabling computationally-inexpert scientists and clinicians to explore and interpret their MPS data. Here we describe the current implementation and development of the Wasp System and the roadmap for its community development.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Redes de Comunicação de Computadores , Genômica/métodos , Humanos
8.
Stud Health Technol Inform ; 175: 182-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942009

RESUMO

Massively-parallel sequencing (MPS) technologies and their diverse applications in genomics and epigenomics research have yielded enormous new insights into the physiology and pathophysiology of the human genome. The biggest hurdle remains the magnitude and diversity of the datasets generated, compromising our ability to manage, organize, process and ultimately analyse data. The Wiki-based Automated Sequence Processor (WASP), developed at the Albert Einstein College of Medicine (hereafter Einstein), uniquely manages to tightly couple the sequencing platform, the sequencing assay, sample metadata and the automated workflows deployed on a heterogeneous high performance computing cluster infrastructure that yield sequenced, quality-controlled and 'mapped' sequence data, all within the one operating environment accessible by a web-based GUI interface. WASP at Einstein processes 4-6 TB of data per week and since its production cycle commenced it has processed ~ 1 PB of data overall and has revolutionized user interactivity with these new genomic technologies, who remain blissfully unaware of the data storage, management and most importantly processing services they request. The abstraction of such computational complexity for the user in effect makes WASP an ideal middleware solution, and an appropriate basis for the development of a grid-enabled resource - the Einstein Genome Gateway - as part of the Extreme Science and Engineering Discovery Environment (XSEDE) program. In this paper we discuss the existing WASP system, its proposed middleware role, and its planned interaction with XSEDE to form the Einstein Genome Gateway.


Assuntos
Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Armazenamento e Recuperação da Informação/métodos , Internet , Alinhamento de Sequência/métodos , Análise de Sequência/métodos , Interface Usuário-Computador , Disciplinas das Ciências Biológicas , Software
9.
Genome Res ; 21(11): 1833-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21957152

RESUMO

Heterochromatin is believed to be associated with increased levels of cytosine methylation. With the recent availability of genome-wide, high-resolution molecular data reflecting chromatin organization and methylation, such relationships can be explored systematically. As well-defined surrogates for heterochromatin, we tested the relationship between DNA replication timing and DNase hypersensitivity with cytosine methylation in two human cell types, unexpectedly finding the later-replicating, more heterochromatic regions to be less methylated than early replicating regions. When we integrated gene-expression data into the study, we found that regions of increased gene expression were earlier replicating, as previously identified, and that transcription-targeted cytosine methylation in gene bodies contributes to the positive correlation with early replication. A self-organizing map (SOM) approach was able to identify genomic regions with early replication and increased methylation, but lacking annotated transcripts, loci missed in simple two variable analyses, possibly encoding unrecognized intergenic transcripts. We conclude that the relationship of cytosine methylation with heterochromatin is not simple and depends on whether the genomic context is tandemly repetitive sequences often found near centromeres, which are known to be heterochromatic and methylated, or the remaining majority of the genome, where cytosine methylation is targeted preferentially to the transcriptionally active, euchromatic compartment of the genome.


Assuntos
Citosina/metabolismo , Metilação de DNA , Replicação do DNA , Genoma Humano , Heterocromatina/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fatores de Tempo , Transcrição Gênica
10.
Epigenomics ; 1(1): 33-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22122636

RESUMO

There is increasing interest in the role of epigenetic and transcriptional dysregulation in the pathogenesis of a range of human diseases, not just in the best-studied example of cancer. It is, however, quite difficult for an individual investigator to perform these studies, as they involve genome-wide molecular assays combined with sophisticated computational analytical approaches of very large datasets that may be generated from various resources and technologies. In 2008, the Albert Einstein College of Medicine in New York, USA established a Center for Epigenomics to facilitate the research programs of its investigators, providing shared resources for genome-wide assays and for data analysis. As a result, several avenues of research are now expanding, with cancer epigenomics being complemented by studies of the epigenomics of infectious disease and a neuroepigenomics program.


Assuntos
Academias e Institutos , Epigenômica , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional , Metilação de DNA , Humanos
11.
Reproduction ; 131(4): 721-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16595723

RESUMO

The pregnancy-specific glycoproteins (Psg) are secreted hormones encoded by multiple genes in rodents and primates, and are thought to act as immune modulators. The only Psg receptor identified is CD9, through which Psg17 induces cytokine production from macrophages cultured in vitro. We examined temporal and spatial aspects of Psg and CD9 expression during mouse pregnancy to determine whether their expression patterns support a role in immune modulation. Using in situ hybridisation, immunohistochemistry and RT-PCR we found Psg expression in trophoblast giant cells and in the spongiotrophoblast. Psg22 is the predominant Psg family member expressed in giant cells. Detectable Psg is associated predominantly with endothelial cells lining vascular channels in the decidua, rather than with maternal immune cell markers. CD9 expression exhibited partial overlap with Psg, but without exclusive co-localisation. CD9 was observed in decidual cells surrounding early implantation sites, and in the endometrium. However, embryo transfer of wild-type embryos to CD9-deficient females indicates that maternal CD9 is not essential for successful pregnancy.


Assuntos
Endotélio Vascular/química , Circulação Placentária , Proteínas da Gravidez/metabolismo , Animais , Especificidade de Anticorpos , Antígenos CD/análise , Antígenos CD/genética , Decídua/química , Transferência Embrionária , Feminino , Desenvolvimento Fetal , Regulação da Expressão Gênica no Desenvolvimento , Células Gigantes/química , Glicoproteínas/análise , Glicoproteínas/genética , Glicoproteínas/metabolismo , Soros Imunes/imunologia , Imuno-Histoquímica/métodos , Hibridização In Situ , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/química , Gravidez , Proteínas da Gravidez/análise , Proteínas da Gravidez/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetraspanina 29 , Trofoblastos/química , Trofoblastos/citologia
12.
BMC Evol Biol ; 5: 39, 2005 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-15987510

RESUMO

BACKGROUND: Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family. RESULTS: Phylogenetic tree analyses indicate that the primate N domains and the rodent N1 domains exhibit a higher degree of conservation than that observed in a comparison of the mouse N1 and N2 domains, or mouse N1 and N3 domains. Compared to human and baboon PSG N domain exons, mouse and rat PSG N domain exons have undergone less sequence homogenisation. The high non-synonymous substitution rates observed in the CFG face of the mouse N1 domain, within a context of overall conservation, suggests divergence of function of mouse PSGs. The rat PSG family appears to have undergone less expansion than the mouse, exhibits lower divergence rates and increased sequence homogenisation in the CFG face of the N1 domain. In contrast to most primate PSG N domains, rodent PSG N1 domains do not contain an RGD tri-peptide motif, but do contain RGD-like sequences, which are not conserved in rodent N2 and N3 domains. CONCLUSION: Relative conservation of primate N domains and rodent N1 domains suggests that, despite independent gene family expansions and structural diversification, mouse and human PSGs retain conserved functions. Human PSG gene family expansion and homogenisation suggests that evolution occurred in a concerted manner that maintains similar functions of PSGs, whilst increasing gene dosage of the family as a whole. In the mouse, gene family expansion, coupled with local diversification of the CFG face, suggests selection both for increased gene dosage and diversification of function. Partial conservation of RGD and RGD-like tri-peptides in primate and rodent N and N1 domains, respectively, supports a role for these motifs in PSG function.


Assuntos
Evolução Biológica , Glicoproteínas/química , Proteínas da Gravidez/química , Glicoproteínas beta 1 Específicas da Gravidez/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biologia Computacional , Éxons , Camundongos , Modelos Genéticos , Modelos Estatísticos , Dados de Sequência Molecular , Família Multigênica , Papio , Peptídeos/química , Filogenia , Primatas , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
13.
BMC Genomics ; 6: 4, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15647114

RESUMO

BACKGROUND: The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. RESULTS: We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. CONCLUSION: We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus structure, and the expression patterns of individual Psg genes. This information will facilitate functional studies of this complex gene family.


Assuntos
Antígeno Carcinoembrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas de Membrana/genética , Proteínas da Gravidez/genética , Glicoproteínas beta 1 Específicas da Gravidez/genética , Processamento Alternativo , Animais , Northern Blotting , Southern Blotting , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos Artificiais de Levedura , Análise por Conglomerados , Biologia Computacional , Cosmídeos/metabolismo , DNA Complementar/metabolismo , Bases de Dados Factuais , Evolução Molecular , Éxons , Etiquetas de Sequências Expressas , Genoma , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica , Oligonucleotídeos/química , Filogenia , Mapeamento Físico do Cromossomo , Placenta/metabolismo , Glicoproteínas beta 1 Específicas da Gravidez/química , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
14.
Mech Dev ; 119 Suppl 1: S285-91, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14516699

RESUMO

Cellular proliferation, specification and differentiation in developing tissues are tightly coordinated by groups of transcription factors in response to extrinsic and intrinsic signals. Furthermore, renewable pools of stem cells in adult tissues are subject to similar regulation. Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that exert such a determinative influence on a variety of developmental pathways from C. elegans to humans, and we wished to exclusively identify novel members from within the whole human bHLH family. We have, therefore, developed an 'empirical custom fingerprint', to define the class II bHLH domain and exclusively identify these proteins in silico. We have identified nine previously uncharacterised human class II proteins, four of which were novel, by interrogating conceptual translations of the GenBank HTGS database. RT-PCR and mammalian 2-hybrid analysis of a subset of the factors demonstrated that they were indeed expressed, and were able to interact with an appropriate binding partner in vitro. Thus, we are now approaching an almost complete listing of human class II bHLH factors.


Assuntos
Caenorhabditis elegans , Proteínas de Ligação a DNA , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Alça-Hélice , Humanos , Bibliotecas Digitais , Dados de Sequência Molecular , Fatores de Transcrição/metabolismo
15.
Gene Expr Patterns ; 2(3-4): 329-35, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12617822

RESUMO

Cellular proliferation, specification and differentiation in developing tissues are tightly coordinated by groups of transcription factors in response to extrinsic and intrinsic signals. Furthermore, renewable pools of stem cells in adult tissues are subject to similar regulation. Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that exert such a determinative influence on a variety of developmental pathways from C. elegans to humans, and we wished to exclusively identify novel members from within the whole human bHLH family. We have, therefore, developed an 'empirical custom fingerprint', to define the class II bHLH domain and exclusively identify these proteins in silico. We have identified nine previously uncharacterised human class II proteins, four of which were novel, by interrogating conceptual translations of the GenBank HTGS database. RT-PCR and mammalian 2-hybrid analysis of a subset of the factors demonstrated that they were indeed expressed, and were able to interact with an appropriate binding partner in vitro. Thus, we are now approaching an almost complete listing of human class II bHLH factors.


Assuntos
Sequências Hélice-Alça-Hélice/genética , Biblioteca de Peptídeos , Proteínas/classificação , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteínas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...